' (Operating System) -

pers . comm i .
?en » The medium term scheduling affects processes - environment. The two most mmon kinds of seﬂuphwcmm
doryh o ready-suspended are counting semaphores md_bmn.ry muphores.‘ nting
strap o block-suspended semaphores represent molkiple ropources, while blm '
n the » The.long term scheduling affects processes semaphores, as the name implies, represents two poss
yabi]a - states (generally 0 or 1; locked or unlocked). ‘
ader :exited s A semaphore can o_nly be accessed uslng]:he
‘ . A = . % . ! . . ed
tem, Long Term Scheduling : Long term scheduling fo}lllowmg ope:atlo‘r'!vfgn\::l;(c) ::sdss;gn:i(r)e:l:i)eﬂ ;:; the
plete controls the degree of multiprogramming in multitasking | WAhen a process than 0, then the process can take
T t followi rtain policies to decide whether the semaphore is greater than 0, oy i
f the i how ngee '.nf) lbe. . if than that resource. If the semaphore is 0, that is the resource
own Zﬁ???bi:‘;ugg?:t:dnm{gh :lfl‘tlr::;:xs's?:)glr:ilb;ns::cect;i isn’t available, that process must wait until it becomes
The need for some f(')rm of compromise between degreé available. signal() is called when a PR G i
— of multiprogramming and throughput seems evident, .) ’
ng? especially when one considers interactive systems. The . Yes, scmaptf;lm;l?fctllln bo i tlo it :.he fant
- higher the number of processes, the smaller the time each writer problem with the fo % 6 iupiemontation
/ of them may control CPU for, if a fair share of Conditions: . i i
responsiveness is to be given to all processes. A very high I. No reader will be kept waiting unless a writer has
g number of processes causes waste of CPU time for - the object.
- system housekeeping chores, However, the number of 2. Writing is performed ASAP - j.e. writers have
_1 active processes should be high enough to keep the CPU precedence over readers.
';; busy servicing the payload (i.e. the user processes) as The reader processes share the semaphores mutex
‘u d much as possible, by ensuring that-on average-there and wrt and the integer readcount. The semaphore wrt is
i always be a sufficient number of processes not waiting also shared with the writer processes.
1en’ for I/0. . Mutex and wrt are each initialized to |, and
A Me'dium Term Scheduling : Medium term readcount is initialized to 0. :
el scheduling is essentially concerned with memory Writer Process
o nanagement, hence it’s very often designed as a part of wait(wrt);
thememorymanagement subsystem of an OS. Its efficient e
r 3 - : . /*writ rmed*
;‘: interaction with the short term scheduler is essential for _ signal(wrt)'m SEitii !
system:perfonnances, especially in virtual memory |. Reader Pr ;
o systems. This is the reason why in paged system the pager 1 d
Is process is usually run atavery high (dispatching) priority wait(mutex);
“; level. 4 readcount := readcount + L
Short Term Scheduling: Short term scheduling . ifreadcount = | then wait(wrt),
" concerns with the aflocation of CPU time to processes in signal(mutex), ‘
i order to meet some predefined system performance /*reading is performed/
obj;cm:es The definition of these objectives (scheduling wait(mutex);
s gloell::z is ztzec:xer;l:hsystem dt_esign issue, g;d determines readcount := readcount - 1
> “chara Ol the operating system from the user’s if readcount = (then ignal(wrt): 4
) pomtqfview. giving rise to the tmditional.distinctionsamong signal(mmex)-um ° - & (‘ g
“; “multi-purpose, time shared”, “batch production”, "real- ’
time” systems, and so on, -
- ?-_
Y at do you understand f. [RTU. 201%; 2045p
be useful 1o solve reag iterprofk Abs. S
Explain, IRTU. 2018, 2015) - So uh?ns to the Critical Section Problem
— Solution to the Critical Section Problem mus; meet
3 e 2 conditions :
Ans. Semapl.:on A semaphore, in its most basijc form, 1. Mutual oni . . P
1s a protected mtegervanableﬂmmfacilitate and restrict 0;1 ua ‘___elg_ug;on 3 - § process Pi is executing in its
. access to shared resources in 4 multi-processing section sectioh, no other process is executing in its critical
S ——

i ——

0S.12

3. Progress : If no process is execut
section and there exists some processes that wish to enter

their critical sections, then only those processes that are
not executing in their remainder section can participate In
the decision, of which will enter its critical section next,

and this decision cannot be postponed indefinitely
(a) If no process is in critical section, can decide

quickly who enters
(b) Only one process can enter the critical section
so in practice, others are put on the queue
3. Bounded waiting : There must exist a bound on the
number of times, that other processes are allowed to enter
their critical sections after a process has made a request

to enter its critical section and before that request is granted
(a) The wait is the time from when a process

makes a request to enter its critical section until
that request is granted

(b) In practice, once a process enters its critical
section, it does not get another turn until a

waiting process gets a turn (managed as a
queue) - -

ing in its critical

~ b T

&pcrnﬂnﬂ System)=

(iii) Running: Once the process has been assigned
to a processor by the OS scheduler, the process
state is set to running and the processor executes
its instructions.

(iv) Waiting: Process moves into the waiting state
if it needs to wait for a resource, such as waiting

for user input, or waiting for a file to become
available.

(v) Terminated or Exit: Once the process finishes

its execution, or jt is terminated by the operating
System, it is moved tq the terminated state where
it waits to be removed from main memory.

Context Switching in Processes

Process switching is context switching from one
Process to a different process. It involves switching out
all of the Process abstractions and resources ip favor of
those belonging to 5 New process. Mogt notably and

expensively, this means switching the memory addresg
Space. This includes

tables, and kernel

Context Switching in Threads .

Switching is context switching from one
thread to another ;

t in the same process. Thread Switching
1S much cheaper a5 j

abstraction uniq

t involves switching out only the

wriread :4 threaq js , single sequential Slow of
control within 4 program,

All programmers are familiar with Writing sequentia
Programs. You haye probably written 5 Program that
displays or sorts a list of fhames, or computes a list of
prime numbers. These are Sequential program;: each has
a beginning, an end, a sequence,

and at any given time
e ——

—(08.13)
during the runtime of the program there is a single point
ution. .

" exe::a thread is similar to a sequential program a single
thread also has a beginning, an end, a sequence, and gt
any given time during the runtime of the program, th'ere IS
a single point of execution. However, a thread ltself is not
a program, it cannot run on its own, but runs within a
program., I

A thread is a basic upit of CPU utilization; it
comprises a thread ID, a program counter, a register set,
and a stack. It shares with other threads belonging to the
same process its code section, data section, and other
operating-system resources, such as open files and signals.
A traditional process has a single tiiread of control. Ifa
process has multiple threads of control, it can perform
more than 1 task at a time.

Threads are visible only from within the process,

where they share | process resources like address space,
open files, and so on. The following

state is unique to each
thread,

. Thread ID

. Register state (including PC and stack pointer)
. Stack

. Signal mask

. Priority

Thread-private storage.
Kernel Leve) Threads :

g system
Virtually aj| contemporary Operating systems including
indows XP, Linux, Mac OS X, Solari and Tru64 UNIX
support kerne] threads, i
3 ‘ % ;
@ Kemel Leve Thread
Fig. 1 : Kernel-teyeq threads
Advantages .
Since, kerne| has fulj knowled
ge of al] s,
scheduler may decide to give more h::e:: a

(0S.14)~

process having large number of threads than
process having small number of threads.

* Kemel-level threads are especially good for

applications that frequently block.

Disadvantages

* Thekemel-level threads are slow and inefficient.
For instance, threads operations are hundreds
times slower than that of user-level threads.

* Since kernel must manage and schedule threads
as well as processes. It require a full thread
control block (TCB) for each thread to maintain
information about threads. As a result there is
significant overhead and increased in kernel
complexity.

User level threads : In this method, the kernel knows
‘about and manages the threads. No runtime system is
needed in this case. Instead of thread table in each process,
the kernel has a thread table that keeps track of all threads
in the system. In addition, the kernel.also maintains the
traditional process table to keep track of processes.
Operating System kernel provides system call to create
and manage threads. User threads are supported above

the kernel and managed directly by the operating system. -

User-level threads implement in user-level libraries, rather
than via systems calls, so thread switching does not need
to call operating system and to cause interrupt to the
kernel. In fact, the kernel knows nothing about user-level

threads and manages them as if they were single-threaded.
processes.

Threads \/ User

Space
Kernel
! Space
r User Level Thread
” Fig. 2 : User level threads
Advantages

The most obvious advantage of this technique is that

a user-level threads package can be implemented on

an Operating System that does not support threads.

* User-level threads do riot require modification to
operating systems.

* . Simple Representation : Each thread is

© represented simply by a PC, registers, stack and a

@.Tech. (V Sem.) C.8. Solved Papcrm)

small control block, all stored in the user process
address space.

* Simple Management : This simply means that
creating a thread, switching between threads and
synchronization between threads can all be done
without intervention of the kernel.

* Fast and Efficient : Thread switching is not much
more expensive than a procedure call,

Disadvantages

* There is a lack of coordination between threads and
operating system kernel. Therefore, process as whole
gets one time slice irrespective of whether process
has one thread or 1000 threads within. It is up (o
each thread to relinquish control to other threads.

* User-level threads require non-blocking systems call
i.e., a multithreaded kernel. Otherwise, entire process
will blocked in the kernel, even if there are runnable
threads left in the procésses. For example, if one
thread causes a page fault, the process blocks.

Q.13 What are the five major activities of an operating
system with regard to file management?
[R.T.U. 2016]

===

Ans. Five major activities of an operating pystem

with regard to file management are:

1. Creating and Deleting Files: File creation and
deletion are fundamental to computer.operations.
In the former, data cannot be stored in an efficient
manner unless arranged in some form of file
structure. In the latter, permanent storage would
quickly fill up if files were not deleted and the space
occupied by them reallocated to new files,
Creating and Deleting Directories: As a
corollary to the need to store data in files, files
themselves need to be arranged in directories or
folders in order to allow their efficient storage and
retrieval. Much like file deletion, unnecessary
directories or folders need to be removed in order
to keep the system uncluttered.

3. File Manipulation Instructions: Since operating
systems allow application software to perform file
manipulation using symbolic instructions, the
operating system itself needs to have a machine-
level instruction set in order to interface with the
Pardwa‘re directly. The application’s symbolic
instructions need to be translated into the machine.-
level instructions either by an interpreter or by
compiling the application code. The Operating
System contains provisions to manage this machine.
level file manipulation,

(Operating System jm
. Mapping to Permanen
’ systle):zs need to be able to map files and folders to

their physical location on permanent storage in Plll-d:r‘
to be able to store and retrieve them. This will Ie\
recorded in some form of disk directory, whic
varies according to the file system, or systems that
the operating system uses. The operating system
will include a mechanism to locate the separate file
segments where it has divided a file.)

5. Backing up Files: Files represent a considerable
investment in time, intellectual effort and often
money as well, thus their loss can have a severe
impact. Computer’s permanent storage dev'lces
generally contain a number of mechanical devices,
which can fail, and the storage media itself may
degrade. A function of operating systems is to
obviate the risk of data loss by backing files up on
additional secure and stable media in a red'undant

system.
P, N

y — - = =

.14)What are the two. models of interprocess
communication? What are the strengths and
weakness of the two approaches? [R.TU. 2016]

Ans. Two Models of Interprocess Communication :
There are two interprocess communication models given
low:

1. Message-passing Model : In this, the communicating

processes exchange messages with one another to

transfer information. Messages can be exchanged
between the processes either directly or indirectly through
a common mailbox. Message passing is useful for
exchanging smaller amounts of data, because no conflicts
need be avoided. It is also easier to implement than is
shared memory for inter computer communication. But
the main disadvantage is it can handle only small amounts
- of data.

2. Shared-Memory Model : In this, processes use
shared memory creates and shared memory attaches
system calls to create and gain access to regions of
memory owned by other processes. Two or more
processes can exchange information by reading and
writif\g data in the shared areas. Shared memory allows
maximum speed and convenience of communication,
since; it can be done at memory speeds when it takes
place within a computer problems exist, however, in the
areas of protection artd synchronization between the
processes sharing memory.
Strengths and weakness of these two approaches
are given below: :
(a) Message Passing Model :
Strengths: '
(i) Easier to implement A
(ii) Best suited for smaller amount of data

i Storage: Operating

Weakness:
(i) Only suitabl
data.) .
(i) Communication using messag
than shared memory because O
in connection setup.

e for the exchange of small amoaunt of

e passing is slower
f the time involved

(b) Shared Memory Model:

*Strengths : - .
Sharegd memory communication is faster the

message passing model when the processes are
on the same machine.

Weakness :
(i) Different processes need to enswre that they are

" not writing to the same location simultaneously.
(i) Processes that communicate using shared memory
need to address problems of memory protection

and synchronization.

——m

at are the difference between user level

\QW

threads and kernel level threads under what

circumstances is one type better than the other?
. [R.T.U. 2016}

Ans. Difference between user level threads and

kernel level threads :
Yes, Kernel level and user level threads are

different, -
S. | User Level Threa Kernel\Le}/fhread
No. :

1. |User thread are Kernel threads are
implemented by users. |implemented by OS.

2. |OS doesn't recognized |Kernel threads are

|_. |user level threads. recognized by OS.
3. |Implementation &f User |Implementation of
threads is easy. Kernel thread is
complicated.
| 4 |Context swiich time is |Context switch time is
less. more.

5. |Context switch requires |Hardware support is
no hardware support. needed.

6. |If one user level thread |If one kernel thread
perform blocking: perform blocking
operation then entire operation then another
process will be blocked. |thread can continue

execution.

7. |Example : Java thread, Example : Window
POSIX threads. Solaris,

Circumstances is one type better than the other :

A user thread is more appropriate for low-level
tasks, whereas a kernel thread is better for high-priority

tasks that should get high priority to system resources.

rd

I

tobin
trage

limes

n for
2015}

wait

{ B.Tech, (v Sem.} C.8. Solved Papers
The benefits of executing tasks in modular threads
instead of independent processes are as follows:
L. Takes less time to creaté a new thread than a
process:
2. Less time to terminate a thread than a process,

3. Less time to switch between two threads within
the same process,

4. Since threads within the same process share
memory and files, they can communicate with each
other without invoking the kernel,

5. Responsiveness - One thread may provide rapid
résponse while other threads are blocked or slowed
down doing intensjve calculations,

6. Resource Sharing - By defau|t threads share
common code, data, and other resources, which
allows multiple tasks to be performed
simulta.neous!y in a single address space.

7. -Scaiability, i.e. Utilization of multiprocessor
architectures - A single threaded process can only

fun on one CPU, no matter how many may be
available, whereas the execution of a multj-
wreaded application may be split amongst available
Pprocessors.
Context Switching in Processes : Refer 1o Q.11
. Context Switching in Threads : Refer 10 Q.11

ParT-C

. oW an operaiip g 5] P BF&S as a resource
manager and Yirtual machine?’
rual

IRTU. 2018, 2014)
[Note : Vertical actually should be taken as virtual.}

@ software that manages the computer hardware and
provide an environment in which a user can execute
Programs in a convenient and efficient manner.

An operating system acts as an intermediary between
the user of a computer and the computer hardware as

-

shown in below fig.1:

Qas
User

Fig. 1:0S8as an Intermediary

(64.17)

Operating System as n Resource Manager e
The concept of the operating system as primarily
providing its users with a convenicnt mlf:rfncc is a top
down view. An alternative, bottom - up view, halds that
the operating system is there to manage all the picces of
a complex system. Modern computer consists of
processors, memories, timers, disks, mice, network
nterfaces, printers and n wide variety of other devices
In the alternative view, the job of the operating system is
to provide for an orderly and controlled allocation of the
processor, memories und 1/0) devices among the various
programs competing for them, ,
When a computer (or network) has multiple users,
the need for managing and protecting the memory, 1/60)
devices and other resources is even greater, since the
users might otherwise interface with one another, In
addition, users ofien need to share not only hardware, b
information (files, database, ctc.) as well, In short, this
view of the operating system holds that its primary task is
to keep track of who is using which resource, to gram
resource requests, so account for usage and to mediate
conflicting requests from different programs and users,
Resource management includeg multiplexing
(Sharing) resources in two ways: in time and in space,

is sharing the printer, When multiple print jobs are queued
up for printing on a single printer, a decision has to be
made about which one js 1o be printed next,

The other kind of multiplexing is space multiplexing,
Instead of the customer taking turns, each gets part of
the resource. For example, main memory is normally
divided up among several running programs, 5o each one
can-be resident at the same time (for example, in order to
take turns using the CPU), Assuming there s enough
memory to hold multiple programs. It is more efficjent to

space and keeginig track of whie is using which desk :":T_”
is n typical operating sysiem resinnos IAnAgALIan &1tk
= ‘g) erating System as Virtusl Machines

'Vilr,mal ernory inchnigues &z, ah opeesting vystem
van create the iHusion that a process has s o pw},- s:;/!
with s own (virtual) tmarreny. Cf conitsn, nerenal ‘,, :
prevess has additional features, such gs vystem calls u'
a file system, that are oo provided by the base l-;.ﬂ}r:;r 4
The vinual-machine approsch, on the other hand ;a
ne pircreidde avy additiemal functionality, ban rather ;mn., 3
an interface that is identical 1o the underiaying bate
hardware. Each process s provdided with & (virtual) copy
of the underlying computer (fig 2

b1 1]]]

Yaprray!
Bresy ey Varrat Yarrw | 4
- l e inrincn Ak A AL
Varriet s et
b= —— e d FESRT ! iyt St
Hardunre Hadorars
(a)

()
Flg. 2: System models (a) Non-virtual machine (b) Virtual machine

The physical computer shares resources 1o create
the virtual machines. Cp1y wheduling can share out the
CPU 6 create the appearance that users have their own
processors. Spooling and a file systerm can provide virtua)
card readers and virtual line printers. A normal user lime-
sharing terminal provides the function of the virtual-
machine operator’s console.

A major difficulty with the virtualmachine approach
involves disk “ystems. Suppose that the physical machine
has three disk drives but wants to sy ! seven virtual
machines, it cannot allocate & disk drive 1o €ach virtus|
machine. The vinual-machine software fself will need
substantial diek “pace 1o provide virtual memory. The
solution is to provide virtual disks, which are identical in
all respects except size - termed minidisks in 1BM’s Vg

Space avaijlable.

Users thus are given their own virua machines. They
can lhcn_ Tun any of the operating systems or software
packages that are available on the
For the IBM v system, a user hormally runs CMS-5
single-user interactive Operating system. The virtual
machine software is concemed with rrm!tiprognnwning
multiple virtya| machines ontg 5 physical machine, but it

e

s [0SHy

] \-"“‘— m— N
does not need to consider any user-support software, This
arrangement may provide a useful partitioning into two
smaller pieces of the problem of designing a multiuser

interactive system,
Q.19 ﬁain ﬂrg architecture of an aperaﬂﬂ% sgsrer&—.)
. R TTUC2018, 2012/

OR
Explain the architecture of operating system
with neat and clean diagram. [R.TU. 2017

Ans. Architecture of Opcrating System
There are different architectures of the operating
system are used in computer world.
Monolithic Architecture for Operating System
Fig.1 shows the monolithic architecture of an
operating system. It is the oldest architecture used for
developing an operating system.

Service Uieies
! Procedures

Fig. 1 : Monolithic architecture
The key features of the monolithic kernels are :
e Monolithic kernel interacts directly with the hard‘ware.
o Monolithic kernel can be optimized for .partlcu}ar
hardware architectural. Monolithic kernel is not very
portable. 4 _
Monolithic kernel gets loaded completely into memory
at boot time.
Most system calls are ma
having the work performed
return the desired result to the user process. ‘
System call 1. (User —> Kernel Mode). 2. Cho:cl\

arameters 3. Call service routine 4. Service routine
call utilities Reschedule/Return Lo us;r. ;

: i i m
ered Architecture of Operating Syste

e Dijkstra introduced the layered architedture for

de by trapping to the kernel,
there, and having the kemnel

{ B.Tech. (V Sem.) C.S. Solved Papers)

Opernior

* |Wser Program

Input/Output Mllnlprnl,‘l

Device Drivers for Operators
(Console |

Memory (Main/Secondary) Management l
Processor Allocation + Muliprogramming I

Hardware

Fig. 2 : Layered architecture

The main benefit of this approach is modularity.
The layers are selected such that each uses services and
functions of its lower layers. All the benefits of modular
programming can be achieved with this architecture. The
layered architecture of the operating system has been shown
in fig.2, At the lowest level, it has hardware, layer 1 has
processor allocation and support for multiprogramming, layer
2 implements memory management, layer 3 contains the
device drivers for operator’s console, layer 4 contains input-
output buffering support.
Virtual Machine Architecture of Operating System

Virtual machine architecture is sométimes, also
known as enterprise system architecture. Virtual machine
operating system for [BM systems is the best example of
Virtual machine concept because IBM pioneered the work
in this area. The VM operating system is built on the virtual
storage concept to subdivide a single computer system
into multiple, virtual computer systems, each with its own
processor, disk storage, tape storage, and other input-output
devices. That is, VM uses software techniques to make a
single computer appear to be multiple smaller comp,.uer

systems,
User Program 1 ; User Program n
Operating System 1 Operating System n
Virtual Machine
Hardware

Fig. 3 : Virtual machine arhitecture
Virtual machine has two main components :
(i) The control program (CP) controls the real machine.
(ii) The conversational monitor system (CMS) controls

yirtual machine.

operatingsyStems.

Operating Syst
Micro-Kernel Architecture of Operating System

A very modern architecture is the micro-kernel
architecture. This architecture strives to take out of the
kernel as much functionality as possible, so as to limit the
code executed in privileged mode and to allow easy
modifications and extensions. It does so by moving many
operating system services from the kernel into the "“user
space”. Thus, making kernel as small as possible and
therefore, it is called Micro Kernel.

This is one advantge as it always stays in the main
memory and thus consumes less memory of the system.

] e VI

ERERCN
g e 08 |

E§| Suppont for Primitives Liks: Processot, Porls, Messages, E}
Memory Objects,

L H]

Fig. 4 : Micro kernal architecture
Exokernel Architecture of Operating System

Exokernel is a further extension of the microkernel
approach where the “kernel” is almost devoid of
functionality; it merely passes requests for resources to
“user space” libraries.

This would mean that (for instance) requests for file
access by one process would be passed by the kemel to
the library that is directly responsible for managing file
systems. Initial reports are that, this in particular result in
significant performance improvergents, as it does not force
data to even pass through kernel data structures.

Table below shows a table that compar is one of these

architectures in brief.
Table: Comparison of kernel implementation of various
operating sysiem architectures.
Monolithic | Micro Kernel| Exo Kernel
Implementation |All are Only lower | Nothing is
of operating implemented |level operating |implemented
system in kemel system in kemel
abstractions space facilities are | space
in kemel

{ B.Tech. (Vv Sem.) C.8. Solved Papers)

Q.22-Write short notes on the following:
(1) Fajr share scheduling —
ﬂD/R}‘ e conifiﬂqn —
mim —

(iv) Sentaphore and mutex .— TV 2017)
‘.__.__.__—-

Ans.(i) Fair Share Scheduling : Fair-share scheduling
is a scheduling strategy for computer operating systems
in which the CPU usage is equally distributed among
system users or groups, as opposed to equal distribution
among processes.

For example, if four users (A,B,C,D) are concurrently
executing one process each, the scheduler will logically
divide the available CPU cycles such that each user gets
25% of the whole (100% / 4 = 25%). If user B starts a
second process, each user will still receive 25% of the
total cycles, but each of user B's processes will now use
12.5%. On the other hand, if a new user starts a process
on the system, the scheduler will reapportion the available
CPU cycles such that each user gets 20% of the whole
(100% / 5 = 20%).

Another layer of abstraction allows us to partition
users into groups, and apply the fair share algorithm to
the groups as well. In this case, the available CPU cycles
are divided first among the groups, then among the users
within the grc ups, and then among the processes for that
user. For ex=mple, if theré are three groups (1,2,3)
containing three, two, and four users respectively, the
available CPU cycles will be distributed as follows:

100% / 3 groups = 33.3% per group

Group 1: (33.3% /3 users) = 11.1% per user

Group 2: (33.3% / 2 users) = 16.7% per user

Group 3: (33.3% / 4 users) = 8.3% per user

(ii) Race condition : In some operating systems,
processes that are working together may share some
common storage that each one can read and write. The
shared storage may be in main memory (possibly in a kemnel
data structure) or it may b€ a shared file; the location of
the shared memory does not change the nature of the
communication or the problems that arise. To see how
interprocess communication works in prac:ficc, let us
consider a simple but common example; a print spooler.
When a process wants to print a file, it enters the file
name in a special spooler directory. Another process, the
printer daemon, periodically checks to see if there are
any files to be printed and if there are, it prints them and
then removes their names from the directory.

Spooler
' directory
4 abc { oul=d]
Process A 5| progc
6| prog.n
7 in=7
Process B 5

Fig. : Two processes want to access shared memory at the same time

Imagine that our spooler directory has a very large
number of slots, numbered 0, 1, 2,, each one capable
of holding a file name. Also imagine that there are two
shared variables, out which points to the next file to be
printed and in which points to the next free slot in the
directory. These two variables might well be kept on a
two-word file available to all processes. At a certain instant,
slots 0 to 3 are empty (the files have already been printed)
and slots 4 to 6 are full (with the names of files queued
for printing). More or less simultaneously, processes A
and B decide they want to queue a file for printing. This

~ situation is shown in fig.

Situations where two or more processes are reading
or writing some shared data and the final result depends
on who runs precisely when, are called race conditions.
Debugging programs containing race conditions is no fun
at all. The results of most test runs are fine, but once in a
rare while something weird and unexplaied happens.

(iii) Critical section :

Walt s »
enter
Critical Section
Signal § i
Fig.

The key to preventing trouble involving shared

storage is find some way to prohibit more than one process -

from reading and writing the shared data simultaneously.
That part of the program where the shared memory is
accessed is called the Critical Section. To avoid race
conditions and flawed results, one must identify codes
in Critical Sections in each thread. The characteristic
properties of the code that form a Critical Section are

Codes that reference one or more variables in a
“read-update-write” fashion while any of those
variables is possibly being altered by another thread.

|0pauﬂngswtﬂn} -
v

S

Codes that alter one or more variables that are
possibly being referenced in “read-update-write” (0
fashion by another thread.

Codes use a data structure while another thread is
possibly altering any part of it.

Codes alter any part of a data structure while itis *| 5
possibly in use by another thread.
Here, the important point is that when one process sl
is executing shared modifiable data in its critical section, b
no other process is to be allowed to execute in its critical -
section. Thus, the execution of critical sections by the q
processes is mutually exclusive intime. |

Critical Section Example

Enqueuct Data)
{ <4—Top of
EnterCriticalSection(ENQ) | Event | Queue
Q[bottom) = Data (top)
bottom = bottom + | Event 2 "
LeaveCriticalSection(ENQ) ,
! Event 3 Next
!l)equcw() Queue
<
EnterCriticalSection(DEQ) (bft';‘m
Data = Qftop]
top=top+ 1
LeaveCriticalSection(DEQ)
retumn Data
}
Does the above code avoid race conditons?
If a process tries to enter a named critical section,
itwill -
.» Blocks : Critical section in use
e Enter: Critical section not in use

(iv) Semaphore : Refer to 0.8.
Mutex : Mutex is a program object that allows multiple
program threads to share the same resource, such as file
access, but not simultaneously. When a program is started
a mutex is created with a unique name. After this stage,
any thread that needs the resource must lock the mutex
from other threads while it is using the resource. The mutex
is set to unlock when the data is no longer needed or the
routine is finished.
There is an ambiguity between binary semaphore and
mutex. But the purpose of mutex and semaphore are
different.
Strictly speaking, a mutex is locking mechanism used
to synchronize access to a resource. Only one task (can
be a thread or process based on OS abstraction) can

LRI N N

acquire the mutex. [t means there is ownership associated

ts critical section,
‘cute in its critical
il sections by the

&

4—Jop of

__'___ Queue .
: (top)

3_- .

3 Next
+ Queue

| Slot
{bottom)

ditons?
critical section,

llows multiple
ce, such as file
ygram is started
ifter this stage,
lock the mutex
irce. The mutex
needed or the

semaphore and
emaphore are

echanism used
one task (can
itraction) can
hip associated

PR SRR, R I S N -

hat is operating system? Explain its types and

services provided by operating system in detail..
‘ [R.T.U. 2017}

: OR . |

What are the different services provided by the

operating system? Explain all of them in detail?
. ' " [R.T.U. 2016]

- Ans. Operating System : Refer to Q.18. | |
Types of Operating Systems : Operating system.
can be classified into following categories:
(1) Single-user Single-tasking Operatmg system
(i) Batch Operating system
(i) Multi-user Operating system
(iv). Multi-tasking Operating system |
(v) Real-time Operating system
(vi) Network Operating system

~ _ (vii) Distributed Operating system

(i) Single-user Single-tasking Operating System:
An operating system that allows a single user to work on
a computer at a time and can execute a single job at a
time is known as singe-user single-tasking operating
system. For example, MS-DOS is a single-user single- -
tasking operating system because you can open and run
only one application at a time in MS-DOS.
| (ii) Batch Operating System' A single user
operatmg system that can execute various.types of JObS
in batches but one after another. In a batch-operating
environment, users submit their programs and data to the .
operator and the operator groups the similar jobs, and then

~ loads them (all groups of programs along with their relevant

data) simultaneously. When the execution of one program
for performing a similar kind of jobs is over, a new program
is loaded for the execution by the operating system. Batch
operating system is suitable for such applications that
require long computation time without user intervention.

- Some examples of such applications are payroll processing,

forecasting, statistical analysis, etc.

(iii) Multi-user Operating System. It permits
simultaneous access to a computer system through two
or more terminals for users. UNIX is an example of multi-

—(B.Tech. [V Sem.) C.S. Solved Papers)

(0s8.24)

user operating system. It allows two or more users to run

at the same time. Some operating systems permit
hundreds or even thousands of concurrent users.

(iv) Multi-tasking Operating System : It is also
called Multiprocessing Operating system. A multitasking
operating system is able to handle more than one processor
as the jobs have to be executed on more than one
processor (CPUs). The running state of program is called
a process or task. A multitasking operating system supports
two’ or more processes to execute simultaneously.

A multiuser operating system allows simultaneous
access to a computer system through one or more
terminals. Although frequency associated with
multiprogramming, multiuser operating system does not
imply multlprogrammmg or multitasking. A dedicated
transaction processing system such as railway reservation
system that hundreds of terminals under control of a single
. program is an example of multiuser operating system.
Window 98/2000/XP/Vista, 0S/2, UNIX, LINUX etc. are
examples of multi-tasking operating system. - _

Time Sharing System : Time sharing is a processor
(CPU) management technique. In a time sharing operating
system, the CPU is allocated to each user, in sequence,
for a small amount of time called time-slice (from 10-100

" milliseconds). A time slice is allocated to each user using

round-robin scheduling algorithm. As soon as the time slice -

is over, the CPU is allocated to the next user.

Time sharing system is a form of multiprogrammed
operating system which operates is an interactive mode
with a quick res ‘onse time. The user types a request to
the computer 12rough a keyboard. The computer
processes it and a response (if any) is displayed on the
user’s terminal. A time sharing system allows many users
to simultaneously share the computer resources. Since
each action or command in a time-sharing system takes a
very small fraction of time, only a little CPU time is needed

“for each user. As the CPU switches rapidly from one
user to another user, each user is given impression that he
has his own computer while it is actually one computer

shared among many users. Most time sharing systems -

use time-slice (round robjn) scheduling of CPU. In this
approach, programs are executed with rotating priority
that increases during waiting and drops after the service
is granted. In order to prevent a program from monopolizing

the processor, a program executing longer than the system

defined time-slice is interrupted by the operating system
and placed at the end of the queue of waiting program.
Memory management in time sharing system provides
for the protection and separation of user programs. Input/
Output management feature of time-sharing system must
be able to handle multiple users (términals). However the

processing of terminals interrupts is not time critical due
to the relative slow speed of terminals and users. As
required by most multiuser environment allocation and
deallocation of device must be perfomed in a manner that
preserves integrity and provides for good performance.

(v) Real-time Operating System: A real-time
operating system (RTOS) is a multitasking operating
system intended for real-time applications. Such
applications include embedded systems (programmable
thermostats, household appliance controllers), industrial
robots, spacecraft mdustnal control and scientific research
equipment.

ARTOS facilitates the creation of a real-time system,
but does not guarantee the final result will be real-time;
this requires correct development of the software. The
primary objective of real-time system is to provide quick
response time. Resource utilisation and user convenience
are of lesser concern to real-time system. In order to
provide quick response time, most of the time processing
remain in primary memory. If a job is not completed within
the fixed deadline, this situation is called deadline overrun.
A real time operating system must minimise the possible
deadline overruns. :

An early example of a large-scale real-time operating
system was Transaction Processing Facility developed by
American Airlines and IBM for the Sabre Airline

~ Reservations System.

(vi) Network Operating System (NOS): A
network operating system (NOS) is an operating system
which makes it possible for computers to be on a network,
and manages the different aspects of the network.
Network operating system (NOSs) are designed to
support interconnection and communication among
computers. Network Operating system provides support
for communication, network management functions and

_ administration, multi-user operations and security. Novel’s

Net ware, Microsoft’s Windows NT, UNIX and Linux

. are examples for network operating sytem. Some

examples are Windows for Workgroups, Windows NT,
AppleShare, DEDnet, LAN tastc, etc.

(vii) Distributed Operating System: A distributed
operating system is one that looks to its users like an
ordinary centralised operating system but runs on multiple
independent CPUs. The use of multiple processors is
invisible to the user. In a true distributed system, users
are not aware of where their programs are being run or

. where their files are residing; they should all be handled

automatically and efficiently by the operating system.

m

They are separate loadable modules. of a user like word processing executing presentation
' software etc.

Process Control Block : Egch process is an interrupt occurs, to allow the process to be
. . a process control continued correctly afterward.
block (PCB),also called a task control block.
A PCB is shéwn in fig. It contains many pieces of Y A7
) information associated with a specific process, including v&“.\\\‘\““\“\ ‘“MW\\\“
. m\\\._.__\\\\\

& these : .
“ B L
e . Process State : The state may be new, ready, “\\.\.\“«“\Vﬂ\%\\\u
running, waiting, halted, and soon. .
.. Program Counter : The counter indicates the Register
address of the next instruction to be executed for 7
; : LA
this process. : w\.\ﬁ“.\.\hk\ﬂ\\.\h“ﬂ
® CPU Registers : The vary in number and type, . ““.““““\“V\NV_“M

depending on the computer architecture. They

include accumulators, index registers, stack | coe
pointers, and general-purpose registers, any |
condition-code information. Along with the program B & i | block (PCB)

counter, this state information must be saved when

(Opérating System J,'—

¢ CPU Scheduling Information : This information
includes a process priority pointers to scheduling
queues, and any other scheduling parameters.

e Memory Management Information : This
information may include such information as the
value of the base and limit registers, the page tables,
or the segment tables, depending on the memory
system used by the operating system. .

® Accounting Information : This information
includes the account of CPU and real time used,
time limits, account numbers, job or process
numbers and so on.

® VO Status Information : This information includes
the list of input devices allocated to the process, a

list of open files. and so on. In brief, the PCB simply -

serves as the repository for any information that
may vary from process to process.
Ans. (b) (i) Kernel Level Threads : Refer to Q.12

(ii) Boot Strap Loader : Refer to Q.6. -

(iii) Multithreading OS : A multithreading operating

system is one that is capable of handling processes and
threads at the same time and in which €very process is
allowed to generate more than one thread. In such an
operating system, there must be facilities for thread
creation, deletion, switching, etc. Such an operating system
allows users to generate more than one request to a
process at a time. For example, a browser can be made
to search simultaneously for more than one topic, even
though there is only one copy of the “browser program”
in main memory. ’

The multiprogramming methodology and technique
are essential in the implementation of multithreading. In
this new environment, a thread becomes the smallest
functional and active object to which CPU (or a PU) is
assigned.

Another example of multithreaded OS, an application
might be divided into four threads : a user interface thread,
a data acquisition thread, network communication, and a
logging thread. You can prioritize each of these so that
they operate independently. Thus, in _multithread_ed
applications, multiple tasks can progress in parallel with
other applications that are running on the‘ system.

plain the following :

Process

Thread

Kernel

Péfine Operating System. Explain how
operating system acts as a resource managgr?
Differentiate between Multiprogramming

and Multi-processing? [R.T.U. Dec. 2013
ﬂ_‘_':'-—

(08.29)
Ans. (a) (i) Process : Refer to Q.11.

Process Control Block : Refer to Q.26(a).

Process States : When program executes, it
changes its state. During whole span it can be divided
into several stages known as states. Each state process
has certain characteristics that describes the process. It
means that process start executing, it goes through one
state to another state.

terminates

admitted interrupt

I/O or
event

completion 1/O or event

wait

Fig. : State of ﬁroce.n
. Each process may be in one of following state :

1. New : The process is beingcreated.

2. Running : Instructions are being executed. When
a process gets a control from CPU & other
resources, it starts executing.) _

3. Waiting : The process is waiting for some event Fo
occur (such as an input I/O completion or reception
of a signal). It is due to process lacks some
resources other than the CPU,

4. Ready : The ready state requires. (a) The process
is waiting to be assigned to a processor. (b) All
ready queue process keeps waiting for CPU time
to be allocated by operating system in order to run.
(c) A program called scheduler which: is part of
operating system pick-up one ready process for
execution by passing control to it.

5. Terminated : The process has finished execution.
These state names are vary across operating

systems. They states, that they represent, are found on
all systems. Certain operating systems more finely
delineate process states. Only one process can be running
on any processor at given moment of time, although many
processes may be ready and waiting.
(ii)) Thread : Refer to Q.12.
(iii) Kernel : The kernel is the central module of an
operating system (OS). It is the part of th{: operating
system that loads first, and it remains in main memory.
Because it stays in memory, it is important for the kernel
to be as small as possible while still providipg all the
- essential services required by other of the operating system

-~

(08.30)

and applications. The kemnel code is usually loaded into a
protected area of memory to prevent it from being
overwritten by programs or other parts of the operating
system

v Typically, the kernel is responsible for memory
management, process and task management, and disk
maragement, The kernel connects the system hardware

to the application software.
L Applications j
4

HARDWARE

KERNEL

SHELL

USER

.) Fig.
Every operating system has a kernel. For example

the Linux kernel is used numerous operating systems

including Linux. Free BSD, Android and others.

Ans.(b) Operating System : Refer to Q.18.

Diffrence between multiprogramming and multi-

processing

S.No.|Multiprogramming | Multitaskin Multiprocessing
1. |Single CPU is Any system |Multiple CPU
decides its time that run more [perform more
between more than |than one than one job at a
lone job. application jtime.
’ {program
. onetime.
2. [Time sharing system |Resource Main frame and
application. management. |super mini

computers.

Q.28 What is critical section problem? How are
semaphores used for solving critical section

problem. [R.T.U. Dec. 2013]
- OR

Explain critical sections problem. How are

semaphores used for solving critical section

problem? [R.TU. 2011}
OR

How does a semaphore solve the critical section

problem ? Discuss whether semaphores satisfy

the three.requirements for a solution to the critical

section problem. i ’

~{(B.Tech. (V Sem.) C.S. Solved Papers)
Ans. The Critical-Section Problem : Refer ro Q.25(u).

A solution to critical section problem must satisfy
following requirements :

1. Mutual Exclusion : Principle of mutual exclusion
states that “If a process is executing in its critical
section, then no other processes can be executed
in their critical séctions”.

2. Progress : If there is no process in critical region
and there are some processes that wants to execute
in critical region, then the process that are not
executing in the remainder section has a right to
race for critical region.

3. Bounded Waiting : There is always a bound or a
limit for a process to enter in the critical section.

We assume that each process is executing at a
nonzero speed. However we can make no assumption
covering the relative speed of the n processes.

At a given point in time, many kernels-made
processes may be active in the operating system. As a
result, the code implementing an operating system (Kernel
code) is subject to several possible rare convolutions.
Consider as an example a kernel data Structure that
maintains a list of all open files in the system.

Solution of C.S.P. using Semaphores : We can
use binary semaphores to deal with the critical-section

* problem for multiple processes. Then processes share a

semaphore, meter, initialized to | each process Pi is
organized as shown in figure,
do{

Wait (mutex);

/l critical section

Signal (mutex);

/l remainder section

} While (True);

Fig. : Mutual exlusion implementation with Semaphores
The main disadvantage of the semaphore definition

.gi_rex? here is that it require busy waiting while a process
Isin its critical section any other process that tries to enter
its critical section must loop continuously in the entry code,

- This continual looping is clearly a problem in a real

multiprogramming system. Where a single CPU is shared
among may processes. Busy waiting wastes CPU cycles
tha.t some other process might be able to use productively.
This type of semaphore is also called a spinlock because
the process “Spins” while waiting for the lock.

To overcome the need for busy waiting, we can

modif){ the definition of the wait () and signal () Semaphore
operations when a process executich the wait () operation
and finds that the semaphore valne ic nnt camoiar. .

Zal

b - .
found 2
»ound, MANA M ENT
nd the MEMORY GE S R
-€55€S
Iways
ystem ‘ .
sance Previous YEARS QUESTIONS
/O -
ty be ‘ It ratio. The pages referenced
tems - ,f;m; z;tezp alg,.e{ aSI,‘ 4,5, 1,2, 5 and 7 (12 pages).
= ParT-A The job is allowed 3 blocks. Compare LRU and
;..eos; FIFO page replacement schemes. _[R.T.U. 2015]
ons — : T v
i is ging) and Ans. Let f denote fault and h denote hit.
ser - . [RTU. 2016} FIFO Scheme
7-f
[tv? Ans. Diﬂ‘ﬁze,nce-be% Segmentation and Paging 5-f
K [. - 2-f
S. tat P
o]~ SeEmentation [T "Bagiig Lt
1. Programmer is aware of Paging is hidden. ' k]
: entation 5-f
l‘: 2. |Segmentation maintains Paging maintains one 4-f
5 ultiple address spaces (address space. . 5-h
,L per process 1-f
1 2-f
e ——————— S_f
Q2 Consider the following segment table, ' 7-f
Segment [Base Length Page Fault Ratio = 11/12
0 | 219 600 LRU Scheme
RN [2300 F e
L 2 S Y 5-f
b 3 [1327 5807 2-f
i [1952 9% 1-f
r Calculate the Physical address Jor the Jollowing £
r’ logical addresses? [R.T.U. 2016/ 5-f -
p Ve 4-f
Ans.(i) 0,430 : 219 + 430 = g49 il
(ii) 1,10 : 2300 + 10'=23 ¢ !
(iii) 2,500 : Illegal Reference sh
///X]w) 3,400 : 1327 + 400 = 1727 78 .

s /\
e

- (V) 4,112 : Illegal Reference

Page Fault Ratio = 1 ¢y 12

—\

Ans. Banker’s Algorithm

The bank'er’s algorithm is a resource allocation and
d_eadloc_k avoidance algorithm that tests for safety by
simulating the allocation for predetermined maximum
possible amounts of all resources, then makes an “s-state”
check to test for possible activities, before deciding whether
allocation should be allowed to continue.

ParT-B

%
QS5 What & memory allocation schemes? Explain
with example. IR.TU. 2017]

OR
Consider the following snapshot of system. The
given jobs are of memory size 13 kB, 5 kB only.

Address Size of Free space
005 2
070 28
105) 12
279 T 82
395 15

Compare best fit, worst fit and first fit memory
allocation schemes. Show the allocated addresses

and free spaces after every job for all 3 schemes.
JR.TU. 2018}

Compare best fit, worst fit and first fit memory
allocation schemes. The given jobs are of memory
size 13 KB, 5 KB only.

. table
how the allocated addresses and free space
fﬁer every job for all 3 schemes. [R.TU. 2015]

i
.ms. Lets call the Job with size 13 as J13 and that with
ize 5 as J5.
est Fit Scheme
J13 wilfbe allocated 395

Address Size of free space :
0035 2 §
070 28

. 105 P 12
279 i 82
395 15

ﬁ{15.'.r-=.-;-1~:.' {V Sem.) C.S. Solved Papers)
The free space table will then become:

Address Size
005 02
070 28
105 12
279 82
408 ; . 02

J5 will be allocated 105.
The free space table will then become:

Address Size
005 02
070 28
110 07
279 82
408 02

Worst Fit Scheme
J13 will be allocated 279.
The free space table will then become:

Address ‘ Size
005 02
070 28
105 12
292 69
395 15

J5 will be allocated 292,
First Fit Scheme
The free space table will then become:

Address Size
005 02
070 28
105 12
297 64
395 15

e belween i d
ol [R.T.U. 2018, Dec. 2013
‘P‘gi— YT
b

hat is fragmentation? Differentiate between
external and internal fragmentation.
[R.T.U. 2017]

F ————————————
Ans. Fragmentation : As processes is located and
removed from memory, the free memory space is broken
into little pieces. External fragmentation exists when
there is enough total memory space to satisfy a request
but the a vailable space are not contiguous; storage is
fragmented into a large number of small holds. This
fragmentation problem can be severe, In the worst case,we

could have a block of free memory between every two
processes. It all these small pieces of memory were in
one big free block instead, we might be able to run several
more process.

Another factor in which end of a free block is
allocated. Depending on the total amount of memery
storage and the average process size, external
fragmentation may be a minor or a major problem.
Statistical analysis of first fit, for instance, reveals that,
even with some optimization, given N allocated blocks,
another O.5.N blocks will be lost to fragmentation.

Memory fragmentation : Memory fragmentation
can be internal as well as external. Consider a multiple-
partition allocation Scheme with a hole of 18, 464 bytes.
Suppose that the next process requests 18,462 bytes. If
we allocate exactly the requested block, we are left with
a hole of 2 bytes. The overhead to keep track of this hole
will be substantially larger than the hole itself. The general
approach to avoiding this problem is to break the physical
memory into fixed sized blocks and allocates memory in
units based on block size with this approach the memory
allocated to a process may be slightly larger than the
requested memory. The difference between these two
numbers is internal fragmentation - unused memory that
is internal to a partition.

One solution to be problem of external fragmentation
is compaction. The goal is to shuffle the memory contents
so as to place all free memory together in one large block
compaction is not always poss ible, however. It relocation
is static and is done at assembly or load time, compaction

_cannot be done; compaction is possible only if relocation
is dynamic and is done at execution time. It addresses an
relocated dynamically, relocation requires only moving the

»program and data and then changing the base register to
reflect the new base address. When compaction is
possible, we must determine its cost. The simplest
compaction algorithm is to made all processes towards
one end of memory: all holes move in the other direction,
producing one large hole of available memory. This
schemes can be expensive.

Optimal, LRU page replacement
R.TU. 2017}

Ans. (a) FIFO Page Replacement
7,0,1,2,0,3,0,4,2, 3,10,3
Considuing no. of frames = 3 (A, B, C)

mn
al

is

»

RO D EEANRYYS

U T S =N B = B o D S B B = B ol " |

LG] |

%

nm901234567"s9n
A 7 7@ 2 2 2@ 4 4 10
B ®@o o0 0Q® 3 3@ 2 2 2
C D11 1 ®o0 0@ 3 3

At time = 3, the oldest'string is replaced i.e. 7
At time = 4, 0 was already then, so no page fault.
At time = §, 0 replaced by 3 o
At time = 6, 1 replace by 0
and so on.
Total page faults = 10
(b) Optimal Page Replacement
7012030423103
Considering no. of frames =3 .

1 2 3 4 5.6 7 8 9
A @7 17®2 22222 @10
B ©® o0 0 0 0 0@ 4 4 4 4°
C O1'1Q 373 33 3. 3

At time = 3, 2 is replaced by 7 as it is not secn
anywhere in the remaining string. - :
At time = 5, 1 is replaced by 3 as 0 and 2 are seen
earlier in the remaining string. . 5 e
At time = 7, 0 is replaced by 4 as 2 and 3 are seen .
earlier in the remaining String. -
No. of page faults = 7
(c) LRU Page Replacement :
7,0,1,2,0,3,0,4,2,3,10,3
Considering no. of frames =3

Time 0 1 2 3 4 5 6 7 8 9 10 1
A @7 1@ 22 2@®4 4§ 10
B @o 0 0Q 0 0 0 0@ 3 3
C DO1 1 Q3 3@ 2 2 2

" . Attime=3, 7 isreplaced by 2 as 0 and 1'were least

recently used elements. :
~Attime =5, 1 is replaced Qy Jas0 and 2 were
least recently used. ‘
Total page faults =9

Hence, for this reference string, page faults in optlmal
page replacement are found to be minimum:

b ————

@539

operating Bystem) ‘
To decide whether this request can be nrrrme]dmt.e:y

anted, we first check that request < Available (Jt.hi.,
(0,1 2)5(3,3,2)),which is true. We then pretend that this

request has been fulfilled and we arrive at the following

new state.

[Allocation

a

[(SIE S S1r-1e)
—|—lolo|w|i)

alo|ov]—|l>

We must determine whether this new system state
is safe. To do so, we execute our safety algorithm and
find that the sequence < P, ,P,,P,, P, P> satisfies our
safety requirement, Hence, we can immeciiately grant the
request of process P,. -

S

' /_'r
)

OR
What is Belady’s Anomaly? In which

algorithm does it occur? [R-TU. 2016]
: OR

What is Belady's Anomaly? [R.TU. 2011]
OR

Describe Belady's Anomaly with the help of
uilable example? [R.TU. 2009]
@, onsider 3 page frames and the following
reference string using FIFO page replacement
algorithm to calculate the number of page
Jaults in each reference string :
70120304230321201701
[R.T.U. 2018, 2014, 2013]
OR :
Consider 3 page frames and the Jollowing
references string. Use LRU page
replacement algorithm to calculate the
nu{nber of page faults in each. Preference
string is :
71?120304230321201 701

: "[R.TU,
OR I 2011)

Consider the following page reference

string,
(n912030423,0,321301,70,1

@" hat d derstand by Belady’
A Q. 47 hat do you understand by Belady’s
amaly? Explain. [RT.UT2018, 2015]

How many page faults would occur for the
replacement algorithms.

(i) FIFO (ii) LRU (iii) Optimal? Assume four
frames available. [R.TU. 2009]

—em
o

Ans.(a) Belady's Anomaly : As the name suggests, in
this scheme, the page that is removed from the memory I8
the one that entered first. Assuming the some page
reference string as shown in fig.1, the states of various
" page frames and page faults after each page reference.
As it is clear from the figure, 15 page faults result.
This algorithm is easy to understand and program.
The first three columns are self-explanatory. In the fourth
reference of page 3, a page fault results and the FIFO
algorithm throws out page 8 because it was the first one
' to be brought in. (It is a coincidence that the OPT also
would decide on the same.) The fifth page refercncq does
not cause a page fault in both OPT and FIFO a'lgonthms
as page | is already in the memory. The sixth page
reference is for page 4. Here, FIFO will throw out page
1, because it came in earlier than the remaining two pages
at that time,viz. pages 3 and 2. Page 1 has been there the
longest. Notice that OPT had chosen page 2 for throwing
out.
[Page References [8 [1]2 [3[1[4[1]s[3[4]ra]a]2]3]1]28]1]2]

| [PageFrame ¢ [8]8[8[3 |3 (3 [3[s|s]s|tfr|r|r|{r|n|1]|[&|B]B
Page Frame | {44 (4i3|3(3]|3)3|12(|2|2]2(2]1}1
Page Frame 2 20202211 |1|4|4|4]a|4a|3]|3]3]3][3]2

[Page Fault®=yos) [*]¢fe f*] [*f*[*f*]J°] [J*f*] | [*J*I*]
Fig.1 : FIFO algorithm "

The reason is that it “knew” in advance that page

1 is going to be required sooner. The FIFO policy does
not “know” this. Hence, in just the next, i.e. the seventh
page reference, page 1 is required causing yet another
page fault. Following this logic, the table can be completed.
The FIFO algorithm has one anomaly known as

Belady's anomaly, named after the one who discovered
it first.

IPagercfcrcncc]2|3]4[,5]2!3[6[2'3[4]5]ﬂ

‘|Pageframe 0|2 (2|2 |5|5|5(6[6[6[6(6](6
Page frame | | '|3 (3|3 (2(2]2(2(2 41313
Page frame 2 414141313(33[3]5(5s

[Pege Rt C=Yes) [* " F " * " [*] T [*[*]]
Fig.z : 9 Page faults with 3 page frames

Normally, if the physical memory size and therefore, -
the number of page frames available increases, the numbc;
of page faults should decrease. This should :mhancc the
performance. But this is not necessarily the case if we

. useFIFO as the page replacement policy. This, in essence

. is Belady's anomaly, Let us, for example, take,a refcrenc;

string 2, 3,4, 5,2, 3, 6,2,3,4,5,6.

H‘*‘Q‘.‘ :

Figure 2 shows that with 3 page frames, FIFO gives
9 page faults. However, fig.3 shows us that if we increase
the number of page frames from 3 to 4, the number of
page faults increases and comes 10.

LPagercfemnce[2l3|4]5|213|6[2|3T4[5|6]

Page frame 0 | 2 | 2 21212]16|6(6(6]5]5
Page frame | 3 313(3(3(212]2]216
Page frame 2 414(41414(3[3([3][3
Page frame 3 SI5(5|5(5|5[4(a4

[Page faul (= Yes) [S T+ [+ ¥
Flig. 3: 10 Page faults with 4 page frantes
This clearly is anomalous. From these figures, we
notice that the page faults increase because in the case
represented by fig.3, the page is referenced as soon as it
is evicted in this specific reference string. Fortunately,
this anomalous behavior is rare and can be found only for
specific types of page reference strings. It does not always
happen for all reference strings and hence, FIFO is still a
fairly good algorithm,
16
14
12

1 St
1% ==

| 2 3 4 3
= Number of Frames
" Ig. 4
Ans.(b) (i) First In first Out (FIFO)

Number of Page

2
Total Page Fault = 15
(ii) Least Recently Used (LRU)
: 7 0 1 20304 2 3 03 211209 1.7 01
: 7 0] 3] @] @ @ 0] (1] [1]
: (o] [o] To| [o] (o] [% ; *
HEHHBEEEE B as

Total Page Fault = 12
(iii) Optimal Page Replacement :
0

:o:oqraoa:nzo:‘rol

BREEE B A §

Total Page Replacement = 9

[T

+ loading the executable code for all

- Systems. With demand- paged virtual memory,

LR TR T

| secondary memory (usually a disk).

{B.Tech. (V S8em.) C.8. Solved Papers)

For example, on our sample reference sfring, the
optimal page - replacement algorithm would yield page
faults as shown above. The First three reference cause
faults that fill the three empty frames. The reference 4
replace page 3, because page 3 will not be used for the
longest period of time.

Unfortunately, the optimal pagc-replaccm'ent
algorithm is difficult to implement, because it requires
future knowledge of the reference string. As a result,.the
optimal algorithm is used mainly for comparison studies.

St

—_—

) Demand Paging [R.T.U. 2018}
(i) Segmentation with ging scheme
A0 { IR.T.U. 2018, Dec. 2013, R.T.U. 2009]

JExplain the following : _j
P,

/A
Ans.(I) Demand Paging: Consider a program that starts /
with list of available options from which the user is to(/
select. Loading the entire program into memory results ir;_/

options, regardless o
whether as option is ultimatel selected by the user or
not.

An alternative strategy is to initially load pages
only as they are needed. This technique is known as
demand paging and is commonly used in virtual memory
pagesare K
are demanded during program

are never accessed are thus never
hysical memory. (

only loaded when they

execution; pages that
loaded into p

?.{ o

memory
Fig. : Transfer ofa Ppaged memory to contiguous disk space
Af demand—paging system is similar to a paging
system with swapping (Figure) where processes reside in
When we want to
swap it into memory. Rather than
rocess into memory, however, we

€xecute a process, we
swapping the entire P

manipulates entjre Processes, wheregag

a pager is
concerned with the indiy

idual Pages of a process, We thus
US€ pager, rather thap Swapper, in connection y

vithdemand
paging,

Ans. (i) Segmentatiop Wwith Paging Scheme : Users
prefe

Structures: objects, arrays, stack, variables
on. Each of thege modules or data elements is referred to

s “the math library»

collection of Segment. Each Segment has 3 segment

/.ée and length. The addresseg Specifies both the segment

Name and the offse; Wwithin the Segment. The yser therefore
Specifies each addresseg i

name and ap offset,

Symbol
table -
Main .
Program

L €mo
job sch dul then fil] w; ;
<Segment_number, offiet > il . cduler may thep f Wwith anothey Jjob

—{0S.41)

Normally, the user program is compiled a.nd the
compiler automatically constructs segments reflecting the
input program.) .

¥ pExﬁrm Ple of segmentation : Consider the situation
shown in fig. :

We have fine segments numbered from 0 through
4. The segments are stored in physical memory as_shown.
The segments table has a separate entry for eac‘h segmf:nt,
8iving the beginning address of the segment in physical
memory (or base) and the length of the segments. For

Logical addregs Space 6700

Fig. 2. Example of Segmentation

Segmentatiop with Paging ; Segmentation can

be combined With paging to provide the efficiency of pagi
with the Protection and ghar;,

ing
Ng capabilitieg of
S€gmentation, A with simple Seégmentation, the logical

(operating System)= (A"Jj

fashion, the system will waste time in reallocation, or

process execution could enter into a deadlock state as
- programs wait for allocated resources to be freed by other
blocked processes. Other factors affectin g the degree of
multiprogramming are program 1/O needs, program CPU
needs, and emory and disk access speed.

V

ean by paging? Explain the concept
of demand

paging with proper diagram.

IRT.U. 2017]
OR ~—
What is demand paging? IR.TU. 2014]
Ans. Paging : Paging is a memo
in which the memory is divid
Paging is used for faster acces
needs a page, it is available {
OS copies a certain number
device to main memory. Paging allows the physical
address space of a process to be noncontiguous.
Demapd Paging : Refer 10 Q.15(). -
Basic Concepts: When a process is to be swapped

in, the pager guesses which pages will be used before the
- Process is swapped out ag

whole process, the pager
pages into memory. Thus, i
Pages that will not be used
time and the amount of ph

ry management technique
ed into fixed size pages.
s to data. When a program
n the main memory as the
of pages from your storage

brings only those necessary
tavoids reading into memory
anyway, decreasing the swap
ysical memory needed.

sl

ain. Instead of swapping ina

{0S.45)

set as usual, but the page table entry fo’r i phge that ': n:;
currently in memory is simpdl_y lr(narked invalid or contai
of the page on disk.

he a?ﬂ(ic:r;z: that mal:k%ng a page invahd will have no effect
if the process never attempts to access the page. Hence,
if we guess right and page in all and only those pages that
are actually needed, the process will run exactly as though
we had brought in all pages. While the process execu'tes
and accesses pages that are memory resident, execution
proceeds normally. ‘

But what happens if the process f(ries to access a
page that was not brought into memory? Access to a page
marked invalid causes a page-fault trap. The paging
hardware, in translating the address through the page table,
will notice that the invalid bit is set, causing a trap to the
operating system. This trap is the result of the operating
system’s failure to bring the desired page into memory (in
anattempt to minimize disk-transfer overhead and memory
requirements), rather than an invalid address error as a
result of an attempt to use an illegal memory address (such
as an incorrect array subscript). We must therefore correct
this oversight. The procedure for handling this page fault
is straight forward.

1. We check an internal table (usually kept with
the process control block) for this process, to determine
Wwhether the reference was a valid or invalid memory

2. If the reference was invalid, we terminate the

process. If it was valid, but we have not yet brought in
that page, we now page it in.

swpou | 00 10 20 5[] 3. Wn_e find a free frame (by taking one from the
«0 50 sO 70 free-frame list, for example).
80 90 o u[] 4 We schedule a disk Operation to read the desired
2010 140 150 Page into the newly allocated frame,
on eQrg g g :
Frame vylig — invalid |
2000 210 20 10 O
0 0 -
A 19[4V 3
N EEL i 4E
Main Memory 8l o "6———— 5
Fig. 1: Transfer of a Paged memory (o cohtiguous disk space 3 —L_ 3 -__Y._ 6
With this scheme, we need some form of hardware 2 ' im
Support to distinguish between those pages that are in $1E ¢ et X 8
memory and those pages that are on the disk. The valid- AR EER YT 9
invalid bit scheme can be used for this purpose. This time, S [4 10
however, when this bit issetto “valid”, this value indicates +LE 4T S EUS n
that the associated Page is both legal and in memory, If ;&“gi“” Page Table :;
the bit is set to “invalid” this value indicates that the page emory i
either is not valid (that is, not the logical address space of is
the process) or is valid but is currently on the disk. The
age table entry for a page that is brought into memory is : Physical Memory
pag pag ' Ty Fig. 2 : Page table when som,
R e i

i new }

case.
PU is
This
CPU
Jage-
ete.

ajor

eful
may
itch
) 24
ney
sfer
ld
and
mly
ing
age
vait
est,

25
00
in

of
A
'a
)

——
Explm‘n the various page replacement policies
using a suitable example.

[R.T.U. Dec. 2013, 2012]

OR'
Write short note on Page Replacement Algorithms
in Detail. - [RTU. 2016}

i s

Ans. (1) FIFO Page Replacement : The simplest page-
replacement algorithm is a FIFO algorithm. A FIFO
replacement algorithm associates with each page the time
when that page was brought into memory. When a page
must be replaced, the oldest page is chosen. Notice that it
is not strictly necessary to record the time when a page is
brought in. We can create a FIFO queue to hold all pages
in memory. We replace the page at the head of the queue. -
When a page is brought into memory, we insert it at the
tail of the queue..

~ For our examples reference string, our three frames
are initially empty. The first three references (7, 0, 1) cause
page faults, and are brought into these empty frames. The
next reference (2) replaces page 7, because page 7 was
brought in first. Since 0 is the next reference and 0 is
already in memory, we have no fault for this reference.
The first reference to 3 results in page 0 being replaced,

~ since it'was the first of the three pages in memory (0, 1,

and 2) to be brought in. Because of this replacement, the
next reference, to 0, will fault. Page 1 is then replaced by
page 0. This process continues as shown in Fig. 1. Every
time a fault occurs, we show which pages are in our three
frames. There are 15 faults alltogether.

The FIFO page-replacement algorithm is easy to
understand and program. However, its performance is not
always good. The page replaced may be an initialization
module that was used a long time ago and is no longer
needed. On the other hand, it could contain a heavily used
variable that was initialized early and is in constant use.

Notice that, even if we select for replacement a page
that is in active use, everything still works correctly. After
we page out an active page to bring in a new one, a fault
occurs almost immediately to retrieve the active page.
Some other page will need to be replaced to bring the
acti.ve page back into memory. Thus, a bad replacement
choice increases the page-fault rate and slows process
execution, but does not cause incorrect execution.

To illustrate the problems that are possible with a

FIFO page-replacement algorithm, we consider the
reference string

—— |

GZD

reference siring
70120304230321201701

2| |2] [3] [4] [4] (@] fo] |o] 7} (7} {7]

(0] [o] al ja| 3] [2] [2] [2] 1] 1] 1] [o] [o]

L) 1] 1] o] [o] [o] f3] (3] 3] (2] 2] [2] 1]
page frames

Fig. 1: FIFO page-replacement algorithm

(2) Optimal Page Replacement : One result of
the discovery of Belady’s anomaly was the search for an
optimal page-replacement algorithm. An optimal page-
replacement algorithm has the lowest page-fault rate of
all algorithms, and will never suffer from Belady’s
anomaly. Such an algorithm does exist, and has been called
OPT or MIN. It is simply "Replace the page that will not
e used for the longest period of time."

Use of this page-replacement algorithm guarantees
the lowest possible page-fault rate for a fixed number of
frames. '

For example, on our sample reference string, the
optimal page-replacement algorithm would yield nine page
faults, as shown in fig. 2 The first three references causes
faults that fill the three empty frames. The reference to
page
reference string \

701203042.3032120170]

iz B B 2l . [g] i

L N 7 R - I o

RGN I 3] 2] (1)
page frames

Flg. 2 : Optimal page-replacement algorithm
2 replaces page 7, because 7 will not be used until
reference 18, whereas page 0 will be used at 5, and page
- 1 at 14. The reference to page 3 replaces page 1, as page
1 will be the last of the three pages in memory to be
referenced again. With only nine page faults, optimal
replacement is much better than a FIFO algorithm, which
had 15 faults. In fact, no replacement algorithm can process
this reference string in three frames with less than nine
faults. :
Unfortunately, the optimal page-replacement
algorithm is difficult to implement, because it requires
future knowledge of the teference string.
(3) LRU Page Replacement : If the optimal
algorithm is not feasible, perhaps an approximation to the
-optimal algorithm is possible. The key distinction betwc;en
the FIFO and OPT algorithms (other than looking
backward or forward in time) is that the FIFO algorithm
uses the time when a page was brought into memory; the
OPT algorithm uses the time when a page is to be used.
If we use the recent past as an approximation of the near
future, then we will replace the page that has not been
used for the longest period of time (fig. 3). This approach
is the Jeast-recently-used (LRU) algorithm.

W

(B.Tech. (V Sem.) C.5. Solved Papers)

LRU replacement associates with each page the time
of that page’s last use. When a page must be replaced,
LRU chooses that page that has not been used for the
longest period of time. This strategy is the optimal page-
replacement algorithm looking backward in time, rather
than forward.

referance string

7 0120 3 04 2 2 02321201701
5 8 8 O O (R C R E B 0
E E kl 2] [
page frames

Flig. 3 : LRU page-replacement algorithm

The result of applying LRU replacement to our
example reference string shown in fig. 3. The LRU
algorithm produces 12 faults. Notice that the first five faults
are the same as the optimal replacement. When the
reference to page 4 occurs, LRU replacement sees that,
of the three frames in memory, page 2 was used least
recently. The most recently used page is page 0, and Jjust
before that page 3 was used. Thus, the LRU algorithm
replaces page 2, not knowing that page 2 is about to be
used. When it them faults for page 2, the LRU algorithm
replaces page 3 since, of the three pages in memory P {0,
3, 4}, page 3 is the least recently used. Despite these
problems, LRU replacement with 12 faults is still much
better than FIFO replacement with 15.

The LRU policy is often used as a page-replacement
algorithm is considered to be good.

(4) Far Page Replacement : When programs
execute, they tend to reference functions and data in
predictable patterns. The far page-replacement strategy
uses graphs to make replacement decisions based on these
predictable patterns. The far strategy has been shown
mathematically to perform at near-optimal levels, but it is
complex to implement and incurs significant execution-
time overhead.

The far strategy creates an access graph (fig. 4) °
that characterizes a process’s reference patterns. Each
vertex in the access graph represents one of the process’s
pages. An edge from vertex v to vertex w means that the
process can reference page w after it has reference page
v. For example, if an instruction on page v references
data on page w, there will be a directed edge from vertex
v to vertex w. Similarly, if a function call to page x returns
to page y, there will be an edge from vertex x to vertex y
The graph, which can become quite complgx, describes
how a process can references pages as it executes
Access graphs can be created by analyzing a compiled
program to determine which pages can be accessed by

{B.Tech. [V Sem.) C.8. Solved Papers)

552

Ans. -...:ur Scheduling : Disk scheduling is done by
operating systems to schedule 1/O requests arriving for
disk. Disk scheduling is also known as [/O scheduling.

IIII.IIIIII

Q.5 What do you mean by FCFS scheduling.
Illlllllll!lllﬂ
Ans. First Come First Serve (FCFS) : It is the simplest
form of scheduling operations performed in order
requested. No recording of request queue. No starvations
i.c. every process is serviced.

Part-B

uppose that a disk drive has 200 cylinders,
numbered 0 to 199. The drive is initially at
cylinder 53. The queue with request Sfrom L/O to
blocks in cylinders 98 183 37 122 14 124 65 67
Count the total head movement of cylinders in

SCAN and C-SCAN scheduling. 3
IR-T.U. 2018, 2014, 2013/

_——
Ans. (i) SCAN Scheduling : The drive is initially at
cylinder 53. i

queue =98, 183,37, 122, 14, 124, 65, 67
0 i4 37 53 65 67 98 122 124 183 199
L. 1 'l L l 1] L 1 |]
I T - u _ _ — — —]

« Fig.l

In SCAN scheduling the direction of head
movement in addition to the head’s current position 53. If
- the disk arm is moving toward 0, the head will service 37
and then 14. At cylinder 0, the arm will reverse and will
move toward the other end of disk. (fig.(1))

Total head movement of cylinders in SCAN
scheduling

= | 6+23+14+65+2+31424+2+59+16

= 252 tracks

' (i) C-SCAN Scheduling : The drive i initially a cylinder

53
queue =98, 183,37, 122, 14, 124, 65, 67

0 14 37 53 65 67 98 122 124 183 199
L 1]
I I I I ﬁ “ “r “] L |

Flg.2

In C-SCAN scheduling movement the head from
one end of the disk to the other, servicing request along
the way. When the head reaches the other end, it
immediately returns to the disk, without servicing any
request on the return trip. (fig.(2))
Total head movement of cylinders in C-SCAN scheduling
= 124243 1424+2+59+16+199+14+23
=382 tracks

£splain the concept of. mwhﬁﬁ with all its types
and its advantage and advantages.

" [RT.U. 2018, 2016/

Ans. Spooling : Spooling is an acronym for simultaneous
peripheral operation On line. When the job requests the
printer to output a line, that line is copied into a system
buffer and is written to the disk. When the job is completed,
the output is actually printed. This form of processing is
called spooling.

disk
o
-
WTT e Tm%.
card reader S— ot PAME
Fig.

Spooling, in essence, uses the disk as a huge buffer
for reading as far ahead as possible on input devices and
for storing output files until the output devices are able to

accept them.

(6553

Spooling is also used for processing @B at remote
sites. The CPU sends the data via communication paths
to a remote printer (or accepts an entire input job w..o:._ a
remote card reader). The remote processing is done at its
own speed, with no CPU intervention The CPU just =nna.m
to be notified when the processing is completed, so that it

can spool the next thatch of data. . »
Spooling overlaps the I/O of one job with the

computation of other jobs. Even in simple system, .En
spooler may be reading the input of one job S.E_.a printing
the output of a different job. During this time, still another
job (or other jobs) may be executed, reading its “cards”
from disk and “printing” its output lines onto'the disk.
Spooling has a direct beneficial effect on the
performance of the system. For the cost of some disk
space and a few tables, the computation of one job can
overlap with the /O of other jobs. Thus, spooling can keep
both the CPU and the I/O devices working at much higher
rates. Spooling leads naturally to multiprogramming which
is the foundation of all modern operating systems
Types of Spoolers
1. Print Spooler
A software program is responsible for managing
all the current printing jobs which are sent to the computer
printer or print server. The print spooler program may
allow a user to delete a print job being processed or
otherwise manage the print jobs currently waiting to be
printed.
2. The System V-style Spooler
The system V-style spooler of printing subsystem
uses system V-Release 4 commands, queues, and files
and isadministered the same way. Typical user commands
available to the system V-style spooler are:
* Ip:theuser command to print a document
* lpstat: shows the current print queue
* cancel: deletes a job from the print queue
¢ Ipadmin : asystem administration command that
configures the print system
* Ipmove: asystem administration command that
moves jobs between print queues
3. The Berkeley-style Spooler
The Berkeley-style spoolers one of several
standard architectures for printing on the Unix platform
Itoriginated in 2. 10BSD), and is used in BSD derivatives
such as FreeBSD, NetBSD, OpenBSD, and DragonFly
BSD. A system running this print architecture could
traditionally be identified by the use of the user command

_vnﬁﬁvgﬁﬁgs&naﬂéﬂoﬁ“w
to the system V-style Ip command. Typica ‘
commands available to the mn_.wn_n.w.&_n spooler are:
Ipr : the user command to print
Ipq : shows the current print queue

e Iprm: deletesajob from the print queue
4. CUPS-based Spooler . .

CUPS (Common UNIX Printing System) isa new
type of spooler. It was designed to work across most
UNIX and Linux-based system. It is also standards
based. It enables printing through RFC1179 (1pr), IPP,
CIFS/SMB, Raw socket (JetDirect), and through local
printing. CUPS uses network printer browsing and
Postscript Printer Description (PPD) files to ease the
common tasks of printing.

Advantages of Spooling

The advantages of sposling are as follows:

() The spooling operation uses a disk as a very large
buffer.

(i) Spooling is capable of overlapping I/O operation
for one job with processor operations for another
job.)

(@) Processes are not suspended for a long time.

(iv) It can produce multiple copies of the output .
without running the process again.

Disadvantages of Spooling

The disadvantages of spooling are as follows:

(1) Need large amounts of disk space. :

(i) Increase disk traffic.

() Not practical for real-time environment, because
results are produce at a later time.

e
Amww wm.n.w_..h-.a global versus local allocation.
= [R.T.U. 2018, Dec. 2013)

Ans. Global Versus Local Allocation -An important
factor in the way frames are allocated to the various
processes is page replacement. With multiple processes
competing for frames, we can classify page-replacement
algorithms into two broad categories: global replacement
and local replacement. Global replacement allows a
process to select a replacement frame from the set of all
frames, even if that frame is currently allocated to some
other process; that is, one process can take a frame from
another. Local replacement requires that each process
select from only its own set of allocated frames.

53

—

T

1
{

’()!)[JIJ/JIJ

f

JE IE JE /% JE § (k) OO OUG O G LY

{

0S.54

- _ohﬂ...mrxz .ﬁmo. consider an allocation scheme where
18N - priority processe:

- typ s 10 select frames from

—._.u_.sn« OAH any ower-priority process. This approach allows
2 high priority process to increase its frame allocation at
the expense of a low priority process.

With a local replacemcent strategy,
of frames allocated to a process does not ¢
global replacemcent, a Pprocess may happen
frames allocated to other processes, thus i
number of frames allocated to it (assumi
Processes do not choose its frames for rep

the number
hange. With
to select only
ncreasing the
ng that other
lacement).
_ One problem with a global replacement algorithm
is that a process cannot Control its own page-fault rate.
The set of pages in memory for a process depends not
only on the Paging behavior of that process but also on
the paging vo_:._io_. of other processes. Therefore, the
same process may perform quite differently (for example,
taking 0.5 seconds for one execution and 10.3 seconds
for the next execution) taking 0.5 seconds for one
execution and 10.3 seconds for the next execution) because
of totally external circumstances. Such is not the case
with a local replacement algorithm. Under local
+ replacement, the set of pages in memory for a process is
affected by the paging behavior of only that process. Local
replacement might hinder a process, however, by not
making avaiisble to it other, less used pages of memory.
Thus global replacement generally results in greater system
throughput and is therefore the more common method.

w Explain various disk scheduling algorithms in
brief. :

- [R.T.U. 2017, Dec. 2013]
OR

Discuss the following disk scheduling
algorithms: 1

(i) Shortest Seek Time First —
(ii) First Come First Served _—
(iiij) SCAN —
(iv) C-Look -

[RTU. 2012]

Ans. Hard Disk : A hard disk drive is a collection of
plates called platters. The surface of hard disk is made of
concentric circles called tracks. ﬂ_._:._._n_. more, each track
is divided into smaller pieces called sectors.

——{B.Tech. (V Sem.) C.S. Solved Papers)

For each I/O output request first head is selected.
It is then moved over the destination track. The disk is
then rotated to position the desired sector under the head
and finally the read/write operation is performed.

- w
Platters i >

+

.
N .
Sectors h- o Aurack
Tracis i

.
. ’
Jl't

Fig.

The main responsibility of the operating system is
to use hardware efficiently. For the disk gives the main
responsibility are :

1. Maximize the Throughput: The average number
of requests satisfied per unit time.

Minimize the Response Time: The average time
that a request must wait before it is satisfied.
The access time consist of two major components.

Seek Time: Seek time is the time for the disk arm

to move the heads to the cylinder containing the
desired sector.

2.

2. Rotational Latency: Rotational latency is the

additional time for the disk to rotate the desired

sector to the disk head.

Disk Bandwidth is the total number of bytes transferred
divided by the total time between first request for service
and the completion of the last transfer, There are several
algorithm exist to schedule the servicing of disk 1/O
requests illustrate them with a request queue (0 - 199)
suppose disk head initially at 100" position.

(i) FCFS Scheduling

(i) SSTF Scheduling

(iii) SCAN Scheduling

(iv) C-SCAN Scheduling

(v) LOOK Scheduling and C-LOOK Scheduling
(i) First Come First Serve (FCFS) : It is the simplest
form of scheduling operations performed in order
requested. No recording of request queue. No starvations
i.e. every process is serviced.

Poor Performance total time estimated by total arm
motion |100 — 23| + |23 — 80| + |80 — 132] + |132 ~ 44| + |
44 — 188 =77+ 57+ 52+ 88 + 144 =418 Cylinder.

Disk head initially at cylinder 100. It will move from
10010 23, then to 80, 132, 44 and finally to 188.

Fig.
(ii) Shortest-Seek-Time-First (SSTF) : Selects the
request with minimum seek time from the cirrent position.
SSTF makes easy to service all the requests close to the
current head position before moving the head for a way
to service other requests. Reduce total seek time as

""compared to FCFS. Starvation is possible.

) vy w0

100 132 “188 199

Fig.

The closest request to the initial head position (100)
is at cylinder 80. Once we are at cylinder 80, the next
closest requests is at 44 from there, the request at cylinder
23 is closer than the one at 132 so then 132 and it finally
service 188. Total head movement = |100 — 80| +| 80 — 44|
+| 44 —23|+23 - 132 +|132 - 188| = 142 Cylinders.
(ilf) SCAN Scheduling : The disk arm starts at one end
of the disk and moves towards the other end, servicing a
requests until is gets to the other end of the disk. When it
reaches at the end, the direction of head is reserved and
servicing continues. This is also known as Elevator
algorithm because the head continuously scans back and
forth across the disk. Reduces variance compared to
SSTF.

0 3 44 80 00 132 188 199
— 1 1 3

Fig.

If the disk arm is moving towards 0, the head will
service 80 and then 44, 23. A cylinder 0, the arm will move
towards the other ends of the disk servicing the requests
at 132, 188. Total head movement | 100 — 80] + |80 — 44
+[44 -23|+{23 - 0] +|0 32| +|132 - 188| = 88 Cylinders.
(iv) C - SCAN Scheduling: Circular Scan Scheduling is
a variant of SCAN, to provide information time. Like
SCAN it servicing request along the way until the head
reaches the end 0 or 199, It immediately moves in reverse
direction, without servicing any request.

o
e
o
£
20
S
S
[x]
™
£

Fig.
(v) LOOK and C - LOOK Scheduling : The arm goes
only as far as the final request in each direction. Then it
reverse its direction. Without going all the way to travel
of the disk. These versions of SCAN and C- SCAN all
known as LOOK and C -look. They look for a request
before continuing to more in a given direction.

¢ B 4 B ww L
LOOK

0 23 4“4 B0 100 132 188 GM

" 'l 1 I} 1 - 1 1

C - LOOK
Fig.

Q.10 Apply deadlock detection algorithm to the
Jollowing data and show the results :
Available = (2, 1, 0, 0)

2.0 0 1
Request =\1 0 1 0
2100
0 0 10
Allocation =2 0 0 1 [R.T.U. 2016)
0120
Ans.
1. First process 3 is satisfied so it can be completed
and resources freed.
" Available :
2220

Part-C

[R.T.U. 2018, 2013/
OR
at is deadlock? Explain the conditions and
prevention of deadlock? [RTU. 2017}
OR
f What are the different deadlock prevention
schemes? Explain. IRT.U. 2015]
OR
What is deadiock? What are the necessary
conditions to occur the deadlock? What are the
various methods (o recover from the deadlock?
[R.TU. 2014]
—
Ans. Introduction to Deadlocks : A set of processes
is deadlocked if each process in'the set is waiting for an
event that can cause only by another process in the set.
_ Because all the processes are waiting, none of them
will, even cause any of the events that could wake up any
of the other members of the set and all the processes
continue to wait forever. For this model, we assume that
processes have only a single thread and that there are no

Interrupts possible to wake up a blocked process. The no-
interrupts condition is needed to prevent an otherwise
deadlocked process from being awakened by, say, an alarm
and then causing events that release other processes in
the set.

Conditions for Deadlock

Four essential conditions for deadlock to occuy ;
Coffman et al. (1971) showed that four conditions must
hold for these to be a deadlock :

1. Mutual exclusion condition : Each resource is
either currently assigned to exactly one process or is
available,

2. Hold and wait condition : Processes currently

holding resource granted earlier can request new .

resources.

3. No preemption condition : Resources previously

granted cannot be forcibly taken away from a process.

They must be explicitly released by the process holding
them.

4 Cirgu]ar wait condition : There must be a
cll‘(.:lflal‘ chain of two or more processes, éach of which is
waiting for a resource held by the next member of chain,

p—

)

(
“ ¢

)

’.4

r’ l,

()

DD D D)

2 0 1) N N

W,

/

§

JUJuUVuUuuUuuvuUvuuvuuvuuwuLwLuvwLvuweu

P,

(o

©559)

All four of these conditions must be present for a
deadlock to occur. If one of them is absent, no deadlock
is possible.

Deadlock Prevention : Deadlock avoidance is
essentially impossible because it requires information about
future requests. Different deadlock prevention schemes
are as follows :

(i) Attacking the mutual exclusion condition : If
no resource were ever assigned exclusively to a single
process, we would never have deadlocks. However it is
equally clear that aHqwing two processes to write on the
printer at the same timje will lead to chaos.

By spooling printer output, several processes can
generate output at the same time. In this model, the only
process that actually requests the physical printer is the
printer daemon. Since the daemon never requests any
other resources, we can eliminate deadlock for the printer.

(ii) Attacking the hold and wait condition : The
second conditions stated by Coffman et al looks slightly
more promising. If we can prevent processes that hold
resources from waiting for more resources, we can
eliminate deadlocks. One way to achieve this goal is to
require all processes to request all their resources before
starting execution. If every thing is available, the process
will be allocated whatever it needs and can run to
completion. If one or more resources are busy, nothing
will be allocated and the process would just wait.

An immediate problem with this approach is that
many processes do not know how many resources they
will need until they started running. In fact, if they knew,

the Banker’s algorithm could be used. Another problem is .

that the resources will not be used optimally with this
approach. Nevertheless, some mainframe batch system
requires the user to list all the resources on the first line of
each job. The system then acquires all resources
immediately and keeps them until the job finishes. While
this method puts a burden on the programmer and wastes
resources, it does prevent deadlocks.

(iii) Attacking the no preemption condition :
Attacking the third condition (no preemption) is even less
promising than attacking the second one. If a process has
been assigned the printer and is in the middle of printing
its output, forcibly.taking away the printer because a
needed plotter is not available is tricky at best and
impossible at worst.

(iv) Attacking the circular wait condition : The
circular wait can be eliminated in several ways. One way
is simply to have a rule saying that a process is entitled
only to a single resource at any moment. If it needs a
second one, it must release the first one for a process that
needs to copy a huge file from a tape to a printer, this
restriction is unacceptable.

- == s — D

-

s a e apd: e

iing
s k,
Irce
1als

{B.Tech. (V Sem.) C.5. Solved Papers)
® Available[j] = k means there are ‘k’ instances
of resource type R,
Max :
* Itis a 2-d array of size ‘n*m’ that defines the
maximum demand of each process in a system.
* Max[i, j] = k means process P, may request at
most ‘k’ instances of resource type R
Allocation :
® Itisa2-d array of size ‘n*m’ that defines the
‘number of resources of each type currently
allocated to each process.
* Allocation(i, j] = k means process P, is currently
allocated ‘k’ instances of resource type R,
Need :
= It is a 2-d array of size ‘n*m’ that indicates
the remaining resource need of each process.
® Need [i, j] = k means process P, currently
allocated ‘k’ instances of resource type R
= Need[i, j]=Max[1i, j]—-Allocation[i, j]
Allocation, specifies the resources currently allocated
to process P, and Need, specifies the additional resources

that process P; may still request to complete its task.
Banker’s algorithm consist of Safety algorithm and

& algorithm for finding out whether or not a system
is in a safe state can be described as follows:
1. Let Work and Finish be vectors of length ‘m’
and ‘n’ respectively.
Initialize: Work = Available .
Finish[i] = false; for i=1, 2, 3,4....n
2. Find an i such that both
a. Finish[i] = false
b. Need, <= Work if no such i exists goto step
‘ 4)
3. Work = Work + Allocation
Finish[i] = true
goto step (2)
4. if finish [i] =true for all i
then the system is in a safe state
Resource-Request Algorithm
Let Request, be the request array for process P;.
Request, [j] = k means process P; wants k instances of
resource type R,. When a request for resources is made
by process P, the following actions are taken:
1. If Request, <= Need,
Goto step (2) ; otherwise, raise an error
condition, since the process has exceeded its
maximum claim.

o ol AR

—)|\ et

2. IfRequest <=Available Goto step (3); otherwise,
P, must wait, since the resources are not
available.

3. Have the system pretend to have m:onmﬁa m_._n
requested resources to process Pi by modifying
the state as follows:

Available = Available — Request,

Allocation, = Allocation, + Request,

Need, = Need — Request;

Allocation Maximum Available
AIB/CID/A[B[C|D|[A|B|C|D
polojoj1l2lofof1]2]1]5]2(0
prl1]ofofof1{7[5]0
P2|1[|3[5|4|2[3]|5]6
P3|0|6(3|2|0([6]5]2
P4|0|0f{1[{4[0[6[5]6
Step 1 - Calculate Need Matrix-
Need = Max — Allocation
A B C D
Py 0 0 0 0
P 0 7 5 0
Py 1 0 0 2
P, 0 0 2 0
P, 0 6 4 2
Step 2

.Predicting Safe Sequence-
() Work=Available
=1,5,2,0
Finish=F|F|F|F|F]
F = False, T=True POP1P2P3P4
(i) Fori=0
Need P0=0,0,0,0

No allocation needed PO in kept in safe sequence.

Work = Work + Allocation PO
=1,5,2,0+0,0,1,2
=1,5,3,2
Finish [P0] =T

(i) Fori=1
Need P1 =0,7,5,0
Need Pl > Work
NeedP1=>1,5,3,2
oo P1 = must wait
fori=2
Need P2=1,0,0, 2
Need P2 < work
1,0,0,2<1,5,3,2
P2 is kept in safe sequence
work = work + Allocation
=1,53,2+1,3,5,4
=288,6
Finish [P2] =T

(iv) Fori=3

Need P3 < Work

P3 is kept in safe sequence
work=2,8,8,6+0,6,3,2
=2,14,11,8

Finish [P3]=T

(v) fori=4

Nead P4 < work

P4 is kept in safe sequance
work =2, 14,11,8+0,0, 1,4
=2,14,12,12

Finish [P4]=T

(vi) Fori=35

Nead P1 < work

P1 is kept in safe sequance
work=2,14,12,12+1,0,0,0
=3,14,12,12

Finish [P1]1=T

PO P1P2P3 P4
Hence, the system is in safe state and safe sequance
=P0, P2, P3, P4, PIl,

(b) Pl request resource as’

ABCD

1,0,2,1

Using Resource Request Algo-

Request P1 < Need P1

1,0,2,1<0,7,5,0

This statement in false

Hence resource request will not be ful filled.

Q.16 What do you mean by disk scheduling? Suppose

the head of moving head disk is currently
servicing s request at track 60. If the queue of
request is kept in FIFO order. What is the total
head movement to satisfy these requests for the
Jollowing disk scheduling algorithm:

(i) FCFS
(i) SCAN
(iii) C-SCAN

Request Sequence Track Number

35

175

30
125
10

|| w| Wb~

140

, [RTU. 2017}
e eeeee————————————

AT PPPPPPPPPLPYP PP

o)

-

(Operating System)
Random access files are essential for many
apphcations, for example, database systems.

In a banking application, a customer may want to
look up his current balance. This can be easily done by
locating this customer’s record using his account number
as a key, rather than sequentially reading the records for
thousands of other customers before this customer’s
record is located and read.

It is worth mentioning here that not all operating
systems support both sequential and random access for
files. Some systems allow only sequential file access,
others allow only random access. Some systems require
that a file should be defined as sequential or random when

it is created, so that it can be accessed in the way it has
been declared.

[R.TU. 2016]

Ans. File System : A file system is a method of organizing
files on physical media, such as hard disks, CD’s, and
flash drives. In the Microsoft Windows family of operating
systems, users are presented with several different choices
of file systems when formatting such media. These
choices depend on the type of media involved and the
situations in which the media is being formatted. Common
file systems in Windows are as follows :

™ NTFS . FAT
o exFAT e HFS+
e EXT

File Operations :

A file is an abstract data type. Operation on file,
operating system provides system calls for creating,
deleting, read etc. Basic operations on files are :

1. Create a file

2. Writinga file

3. Readinga file

4. Delete a file

5. Truncatinga file

6. Repositioning within a file
1. Create a file : For creating a file, address space in the
file system is required. After creating a file, entry of the

file is made in the directory. The directory entry records
the name of the file and the location in the file system.

2. Writing a file : System call is used for writing into file.

Itis required to specify the name of the file and information
to be written to the file. According to the file name, system

will search the name in the directory to find the location
of the file.

3. Reading a file : To read a file, system call is us_cd. It
requires the name of file and memory address. Again the
directory is searched for the associated directory entry
and the system needs to keep a read pointer to the location
in the file where the next read is to take place.

4. Delete a file : System will search the directory, which
file to be deleted. If directory entry is found, it releases all
file space. That free space can be reused by another (user)
files.

5. Truncating a file : Refer to Q.4.

6. Repositioning within a file : The directory is searched
for the appropriate entry, and the current file position is
set to a given value. Repositioning within a file does not

need to involve any actual I/O. This file operation is also
known as file seek.

Q.8 Explain various feamres'of Jile system of linux.
[RT.U. 2015/

Ans. In Linux, everything is configured as a file. This
includes not only text files, images and compiled programs
‘(also referred to as executables), but also directories,
partitions and hardware device drivers.

Each filesystem contains a control block, which
holds information about that filesystem. The other blocks
in the filesystem are inodes, which contain information
about individual files and data blocks, which contain the
information stored in the individual files.

There is a substantial difference between the way
the user sees the Linux filesystem and the way the kernel
(the core of a Linux system) actually stores the files. To
the user, the filesystem appears as a hierarchical
arrangement of directories that contain files and other
directories (i.e., subdirectories). Directories and files are
identified by their names. This hierarchy starts from a

single directory called root, which is represented by a “/”
(forward slash).

The Filesystem Hierarchy Standard (FHS) defines
the main directories and their contents in Linux and other
Unix-like operating systems. All files and directories
appear under the root directory, even if they are stored on
different physical devices (e.g., on different disks or on
different computers). A few of the directories defined by
the FHS are /bin (command binaries for all users), /boot
(boot loader files such as the kernel), /home (us‘crs home
directories), /mnt (for mounting a CD-ROM or floppy disk),

“

v - wi wd

“w wa

RIS, W W W . .=~ ;v- THTETEE VeSSV Wwwwwa .S REASSema,
S —
o,

Q.1
-

-

deshortnoteFdeo:‘ .
" [RTU. 2014/

Ans. File Organization : A file consists, generally
speaking, of a collection of records, a key element in file
management is the way in which the records themselves
are organized inside the file, since this heavily affects
system performances and far as record fi nding and

_access. Note carefully that by “organization” we refer

here to the logical arrangement of the records in the.file
(their ordering or, more generally, the presence of
“closeness” relations between them based on their
content), and not instead to the physical layout of the file
as stored on a storage media, To prevent confusion, the
latter is referred to by the expression “record blocking”,
and will be treated later on.

Choosing a file organization is a design decision, hence
it must be done having in mind the achievement of good
performance with respect to the most likely usage of the
file. The criteria usually considered important are:
_ 1. Fast access to single record or collection of
related records.
2. Easy record adding/update/removal, without
disrupting.]
3. Storage efficiency.
4. Redundance as a warranty against data corruption.
Logical data organization is indeed the subject of
whole shelves of books, in the “Database” section of your
library. Here we’ll bneﬂy address some of the simpler
used techniques, mainly because of their relevance to data
management from the lower-level (with respect to-a
‘database’s) point of view of an OS Five orgamzatnon
models will be considered: -

e Pile.
¢ Sequential.

~ « Indexed-sequential.
« Indexed.

e Hashed.

PRrevious YEARS QUESTIONS

ParT-A

1

Ans. C Shell : The C shell, as its name might imply, was
designed to allow users to write shell script programs using a
syntax very similar to that of the C programming language. It
is known as csh.

Q.1 Describe the function of process scheduler in Linux
os.

Awns. Process Scheduler (SCHED) is responsible for
coatrolling process access to the CPU. The scheduler enforces
a policy that ensures that processes will have fair access to
the CPU, while ensuring that necessary hardware actions
are performed by the kernel on time.

Q2 Whky NFS protocol is used?

Ams. The NFS protocol provides a set of RPCs for remote
file operations. The protocol support the following operations :

Accessing file attributes
Reading and writing files

. Searching for a file within a directory
. Reading 2 set of directory entries

- Manipulating links and directories

L]

L]

Q3 Write any two difference between Unix and Linux.

Ans. Difference between Unix and Linux:
Unix B Linux |
1. |UNIX is propriety system. |Linux is an Open Source
system. o
2. |Development is targeted “ILinux duc.lupsncnt is]
toward specific audience |diverse. /
and platform. ___— - |

ll

Q.4 Define C-shell.

Q.5 What do you mean by palm OS.
Ans. Palm OS : Palm OS is designed for ease of use with a
touchscreen-based graphical user interface.

Q.6 Describe the usage and functionality of the
command “rm -r *” in UNIX ?

Ans. The command “rm —r *” is a single line command to
erase all files in a directory with its subdirectories.
e “rm”-Is for deleting files.

e “—r”-Isto delete directories and subdirectories with
files within.

® «an-]s mdlca e all entries. ‘ ;

escri Jork () system call.

existing process is called fork(). The main process is called
parent process and new process id called child process. The
parent gets the child process id returned and the child gets 0.
The returned values are used to check which process which
code executed. The returned values are used to check which
process which code executed,

Q8 What is UNIX? L/l

Ans. It is a portable operating system that is designed for
both efficient multi-tasking and multi-user functions. Its
portability allows it to run on different hardware platforms. It

was written is C and lets users do processing and control
under a shell.

S e e

at
an
mc
Lii
cal

tyl
pre
cal

sir
ck

wl
the

is

ca
fo
scl
th
of
fa:

as
tic

A AR Y Y |

o 4

©s 89—

Processes and Threads : Operating System Concept

{ Sem.) C.S. Solved W'ﬂ
=\ B.Tech. (V

Difference between Unix and Linux

[

b ¢]
Processes and Threads Linux uses the same internal __Unix B arl\‘g“:l > e *‘
representation for processes and threads; a thread is simply 1. |UNIX is propriety system. ;;‘::n‘s e 5
- e 4
a new process that happens to share the same address space i : e Y T
as its parent. Thread creation is done through clone() system | | 2. DeVEIOPmef};_IS 13:18_"-“; ;i'::r:ede“ i ’
call. Clone() allows a child task to share the address space ;Z‘;arlitsfgi(r:r: Yo SAEIS |
of'the parent task(;?rocess).The flags provided to clone.',() help 5 UNIF)J(maintx:iins g — 1
specify the behaviour of tl-fe new process and detail what consistency between inconsistencies between
resources the parent and child will share. different versions. versions. e
Table 1 : Clone() Flags 4. |In UNIX developers are Linux devclupers‘ are free f
= bounded by standard. and have no restriction
L Tl D?scnpnon = 5. |In UNIX commands, tool |In Linux cn!n_ur_\ands. \
CLONE FILES garem ang c:':: sﬂare ?.?en I:S' and utilities etc. are rarely |tools and uuil_ucs may |
CLONE_FS ina;:::;::;onc wx g et changed over versions. change over tlr.nc. Y |
; > : 6. | UNIX was coded for small | Linux was designed to be l
CLONE_IDLETASK ii;:)m | = (k- handful hardware as compatible as plossibic.{|
CLONE_NEWNS . [Create a new namespace for the child. platform/architecture. R““? on dozcn; of J
CLONE_PTRACE |Continue tracing child. architecture an d s‘fppoz
CLONE_SIGHAND |Parent and child share signal handiers. ":’h'“ef"‘:s 1/ OI e
Parent and child are in the same other external devices.
CLONE_THREAD thread group. Sugponed dcvu‘(es are
Start process in the TASK_STOPPED limitless. 5. |
ChOnE SIOR state. 7. |UNIX kernel is not freely |Linux kernel is freely
; Create a new TLS (thread-local available. available,
CLONE_SETTLS :
= storage) for the child. 8. |UNIX patches available |Linux patches are not
CLONE_VM Parent and child share address space. are highly tested. : highly tested as UNIX
patches, "
System Calls used for Process Management : The | | 9. [Commercial UNIX is Linux has base packages.
system call interface is the boundary with the user and allows usually custom written for
higher-level software to gain access to specific kernel ea-ch. system, mgklng the
functions. The system call is the means by which a process 7 B"gm;l L q‘f't;_’ﬂgh; i
requests a specific kemel service. Some of the system calls ’ wls::lre :: o :Nt;lt ik Thlrea.:t detection and
for process management in Linux operating system are given biig Fixin 5o atc: proper |solution is very fast.
low i M T — L : - —
below in Table 2 11.| Different flavors of Unix |Linux can be freely
Table 2 : System Calls for Process Management have different cost distributed.
S i D — Structures. - ‘
ystem cal escription 12.)A rough estimate of Unix Linux has had about 60. |
Fork (Used to create a new process. viruses is between 85-12 : B #
Exec() Execute a new program vi i ;er.t” d; 0 ;00 viruses listed til|
: - - - : ruses reported ti te. ate.
W?:t() .Wa!lt until the process finishes execution. 13./Market share of Unix js The Market share o
Exit() Exit from the process. less than 0.5 percent of the Linux is about 0.8
Getpid() Get the unique process ID of the process. ¢ market, A
Getppid() | Get the parent process unique ID. % —_—
Nice() To bias the existing property of process.

he-operating systems are differ at
level, as process management, memory management,

Ceptual

~

e ek el . 7 e =y ww

(Operating System)-
Ans.(a) A Network File System (NFS) , the netyvork f_'lle
system, is probably the most prominent network services using
RPC. It allows to access files on remote hosts in exactly the
same way as a user would access any local files. This is
made possible by a mixture of kernel functionality on the
client side (that uses the remote file system) and an NFS
server on the server side (that provides the file data). This
file access is completely transparent to the client, and works
across a variety of server and host architectures.

NFS offers a number of advantages:

(i) Data accessed by all users can be kept on a central
host, with clients mounting this directory at boot
time. For example, you can keep all user accounts
on one host, and have all hosts on your network
mount /home from that host. If installed alongside
with NIS, users can then log into any system, and
still work on one set of files.

Data consuming large amounts of disk space may
be kept on a single host. For example, all files and
programs relating to LaTeX and METAFONT
could be kept and maintained in one place.
Administrative data may be kept on a single host.
No need to use rcp anymore to install the same

stupid file on 20 different machines.

When someone accesses a file over NFS, the kernel
places an RPC call to nfsd (the NFS dsemon) on the server
machine. This call takes the file hand[€, the name of the file
to be accessed, and the user’s user and group id as parameters.
These are used in determining access rights to the specified
file. In order to prevent unauthorized users from reading or
modifying files, user and group ids must be the same on both
hosts.

On most implementations, the NFS functionality of both
client and server are implemented as kernel-level daemons
that are started from user space at system boot. These are
the NFS daemon (nfsd) on the server host, and the Block
/O Daemon (biod) running on the client host. To improve
throughput, biod performs asynchronous I/O using read-ahead
and write-behind; also, several nfsd daemons are usually run
concurrently.)

The NFS implementation of is a little different in that
the client code is tightly integrated in the virtual file system
(VFS) layer of the kernel and doesn't require additional control
through biod. On the other hand, the server code runs entirely
in user space, so that running several copies of the server at
the same time is almost impossible because of the
synchronization issues this would involve. NFS currently also
lacks read-ahead and write-behind, but Rick Sladkey plans
to add this someday.

The biggest problem with the NFS code is that the kernél
as of version 1.0'is not able to allocate memory in chunks
bigger than 4K; as a consequence, the networking code cannot

*ﬁ

(i)

(i)

handle data grams bigger than roughly 3500 bytes after
subtracting header sizes etc. This means that transfers to
and from NFS daemons running on systems that use large
UDP data grams by default (e.g. 8K on SunOS) need to be
downsized artificially.) ‘
Ans.(b) (i) Linux Inter-Process Communication : Inter-
Process Communication, which in short is known as IPC, deals
mainly with the techniques and mechanisms that facilitate
communication between processes. Processes communicate
with each other and with the kernel to coordinate their activities. -
Linux supports a number of Inter-Process Communication (IPC)
mechanisms. Signals and pipes are two of them but Linux also
supports the System V IPC mechanisms named after the Unix
release in which they first appeared.
"The types of inter process communication are :
1. Signals : Sent by other processes or the kernel to -
a specific process to indicate various conditions.
Pipes : Unnamed pipes set up by the shell normally
with the “|” character to route output from one
program to the input of another.)
FIFOs : Named pipes operating on the basis of
first data in, first data out.
Message queues : Message queues are a
' mechanism set up to allow one or more processes
to write messages that can be read by one or more
other processes. ' i
Semaphores : Counters that are used to control.
access to shared resources. These counters are
used as a locking mechanism to prevent more than
one process from using the resource at a time.
Shared memory : The mapping of a memory area
to be shared by multiple processes,
Message queues, semaphores and shared memory can
be accessed by the processes if they have access permission
to the resource as set up by the object’s creator. The process

2.

6.

| must pass an identifier to the kernel to be able to get the

access.
(ii) Booting and Login Process : When a PC is booted, it
starts running a BIOS program which is a memory resident
program on an EEPROM integrated circuit. The BIOS
program will eventually try to read the first sector on a booting
media such as a hard or floppy drive. The boot sector contains
a small program that the BIOS will Igad and attempt to pass
run control to. This program will attempt to read the operating
system from the disk and run it. LILO is the program that
Linux systems typically use to give users a choice of operating
systems to run. It is usually installed in the boot sector which
is also called the master boot record.

Booting ‘ A

In Linux, the flow of control during a boot is from BIOS,
to-boot loader, to kernel. The kernel then starts the scheduler
(toallow multi-tasking) and runs the first userland (i.e. outside

m

(0532 —

blocks. There are no system control blocks accessible in the
virtual address space of a user process; control blocks
associated with a process are stored in the kernel. The
information in these control blocks is use o1
ess control and CPU sch
rocess Control Blocks

€S

when the process is swapped out, such as it
identifier, scheduling information (such as the priority of the
process) and pointers to other control blocks. There is an
array of process structures whose length is defined at system
linking time. The process structures of ready processes are
kept linked together by the scheduler in a doubly linked list
(the ready queue) and there are pointers from each process
structure to the process parent, to its youngest living child
and to various other relatives of interest, such as a list of
processes sharing the same program code (text).

The virtual address space of a user process is divided
into text (program code), data, and stack segments. The data
and stack segments are always in the same address space,
but may grow separately and usually in opposite directions:

most frequently, the stack grows down as the data grow up

toward it. The text segment is sometimes (as on an Intel

8086 with separate instruction and data space) in an address
space different from the data and stack and js usually read
only. The debugger puts a text segment in read-write mode
to be able to allow insertion of breakpoints.

Every process with sharable text (almost all, under
FreeBSD) has a pointer from its process structure to a text

structure. The text structure records how many processes

are using the text segment, including a printer into a list of

their process structures and where the page table for the
text segment can be found on disk when it is swapped. The
text structure itself is always resident in main memory: an
array of such structures is allocated at system link time. The
text, data and stack segments for the processes may be
swapped. When the Segments are swapped in, they are paged.
" .The page tables record information on the mapping
from the process virtual memory to physical memory. The
process structure contains pointers to the page table, for use
when the process is resident in main memory, or the address
. of the process on the swap device, when the process is
" swapped. There is no special separate page table for a shared
text segment; every process sharing the text segment has
entries for its pages in the process page table.
Information about the process that is needed only when
the process is resident (that is, not swapped out) is kept in
the user structure (or u structure), rather than in the process

S unique process

structure, ‘ ;

Every process has both a user and a system mode.
Most ordinary work is done in user mode, but when a system
call is made, it is performed in system mode. The system and

)
The most basic data structure as ciated w
is the process structure. A process_straCture contains
everything that the system needs to about a process

“manipulating pipes

{B.Tech. (V Sem.) C.S. Solved Papers)
user phases of a process never execute simultaneously. When
a process is executing in system mode, a kernel stac_k for
that process is used, rather than the user stack ?elong{ng to
that process. The Kernel stack for the process immediately
follows the user structures. The kernel stack and the user
structure together compose the system data segment f(_)r the
process. The kernel has its own stack for use when‘ it is not
doing work on behalf of a process (for instance, for interrupt
handling).

Figure illustrates how the process structure is used to
find the various parts of a process.

The fork system call allocates a new process structure
(with a new process identifier) for the child process and copies
the user structure. There is ordinarily no need for a new text
structure, as the processes share their text; the appropriate
counters and lists are merely updated. A new page table is
constructed and new main memory is allocated for the data
and stack segments of the child process. The copying of the
user structure preserves open file descriptors, user and group
identifiers, signal handling and most similar properties of a
process.

The vfork system call does not copy the data and stack
to the new process; rather, the new process simply shares
the page table of the old one. A new user structure and a
New process structure are still created. A common use of
this system call is by a shell to execute a command and to
wait for its completion. The parent process uses vfork to
produce the child process, Because the child process wishes
to use an execve immediately to change its virtual address
Space completely, there is no need for a complete copy of
the parent process. Such data structure as are necessary for

may be kept in registers between the vfork

and the execve.

process l . * user kernel
structure 7 structure stack
system data structure
Stack
text
structure e
resident tables i .
. stappable process image
When the parent process is large, vfork an produce
substantial savings in system CPU time. However, it is a fairly
dangerous system call, since any memory changes occurs in
th processes until the eXecve occurs. An alternative is to
share all pages by duplicating the page table, but to mark the
entries of both page tables as COpy-on-write.

